
22.51 Problem Set 2 (due Wed, Sept. 19)

1 Linear Operators (40 pt)

(a). The momentum operator p̂ acts on the spatial part ψ(x) of a quantum state |ψ〉. For

the time being we assume ψ(x) is all there is to |ψ〉.

p̂|ψ〉 = p̂ψ(x) = −ih̄∇ψ(x). (1)

Prove the fundamental relation,

[x̂i, p̂j] = ih̄δij. (2)

(b). Is x̂i a constant operator? Why or why not?

(c). Prove Jacobi’s identity,

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0. (3)

(d). Let L̂i ≡ εijkx̂j p̂k, or more explicitly,

L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x, (4)

prove [L̂x, L̂y] = ih̄L̂z, and write down the other two permutations.

(e). Define L̂2 ≡ L̂2
x + L̂2

y + L̂2
z, prove that [L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0.

(f). Let p̂2 ≡ p̂2
x + p̂2

y + p̂2
z, prove that [L̂x, p̂

2]=0.

(g). Prove that [L̂x, V (r)] = 0 where V (r) is any central potential.

(h). Explain why for a single particle in a central potential, the measurement average 〈ψ|L̂|ψ〉
is a constant vector.

Answer:

(a). Define Â ≡ [x̂i, p̂j]. Â operating on any state |ψ〉 = ψ(x) is,

Â|ψ〉 = [x̂i, p̂j]ψ(x) = xi(−ih̄∂jψ(x)) + ih̄∂j (xiψ(x)) = ih̄(∂jxi)ψ(x) = ih̄δijψ(x). (5)

Therefore Â = [x̂i, p̂j] = ih̄δij.
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(b). No. For example, x1/3 is an entirely different function from x−2/3.

(c).

[Â, [B̂, Ĉ]] = [Â, B̂Ĉ − ĈB̂] = ÂB̂Ĉ − ÂĈB̂ − B̂ĈÂ + ĈB̂Â, (6)

[B̂, [Ĉ, Â]] = [B̂, ĈÂ− ÂĈ] = B̂ĈÂ− B̂ÂĈ − ĈÂB̂ + ÂĈB̂, (7)

[Ĉ, [Â, B̂]] = [Ĉ, ÂB̂ − B̂Â] = ĈÂB̂ − ĈB̂Â− ÂB̂Ĉ + B̂ÂĈ. (8)

We can inspect that all terms cancel.

(d). Two fundamental properties of the Levi-Cevita symbol are,

εijk = −εikj, εijkεij′k′ = δjj′δkk′ − δjk′δkj′ , (9)

where repeated indices in a product (here i) are meant to be summed over. Thus,

[L̂i, L̂i′ ]

= [εijkx̂j p̂k, εi′j′k′x̂j′ p̂k′ ]

= εijkεi′j′k′ [x̂j p̂k, x̂j′ p̂k′ ]

= εijkεi′j′k′ ([x̂j p̂k, x̂j′ ]p̂k′ + x̂j′ [x̂j p̂k, p̂k′ ])

= εijkεi′j′k′ (x̂j[p̂k, x̂j′ ]p̂k′ + [x̂j, x̂j′ ]p̂kp̂k′ + x̂j′ [x̂j, p̂k′ ]p̂k + x̂j′x̂j[p̂k, p̂k′ ])

= εijkεi′j′k′ (−ih̄x̂jδkj′ p̂k′ + 0 + ih̄x̂j′δjk′ p̂k + 0)

= ih̄ (−εijkεi′kk′x̂j p̂k′ + εijkεi′j′jx̂j′ p̂k)

= ih̄ ((δii′δjk′ − δik′δji′)x̂j p̂k′ − (δii′δkj′ − δij′δki′)x̂j′ p̂k)

= ih̄ (δii′x̂j p̂j − x̂i′ p̂i − δii′x̂kp̂k + x̂ip̂i′)

= ih̄ (x̂ip̂i′ − x̂i′ p̂i)

= ih̄εii′kεkjj′x̂j p̂j′

= ih̄εii′kL̂k. (10)

Thus, when i = 1, i′ = 2, only ε123 is nonzero, and we obtain,

[L̂x, L̂y] = ih̄Lz. (11)

Similarly, the permutations

[L̂y, L̂z] = ih̄Lx, [L̂z, L̂x] = ih̄Ly. (12)
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(e).

[L̂2, L̂i]

= [L̂jL̂j, L̂i]

= L̂j[L̂j, L̂i] + [L̂j, L̂i]L̂j

= L̂jih̄εjikL̂k + ih̄εjikL̂kL̂j

= (ih̄εjik)(L̂jL̂k + L̂kL̂j). (13)

The first term is antisymmetric with respect to j ↔ k permutation, whereas the second term

is symmetric with respect to j ↔ k. Because j, k are summed over, the result is 0.

(f). First of all,

[L̂i, p̂i′ ]

= [εijkx̂j p̂k, p̂i′ ]

= εijk[x̂j, p̂i′ ]p̂k

= εijkih̄δji′ p̂k

= ih̄εii′kp̂k. (14)

Therefore,

[L̂i, p̂
2]

= [L̂i, p̂i′ p̂i′ ]

= [L̂i, p̂i′ ]p̂i′ + p̂i′ [L̂i, p̂i′ ]

= ih̄εii′kp̂kp̂i′ + p̂i′ih̄εii′kp̂k

= (ih̄εii′k)(p̂kp̂i′ + p̂i′ p̂k), (15)

and it vanishes for the same reason as in (e).

(g). Similar to (f), we can prove that,

[L̂i, x̂i′ ] = ih̄εii′kx̂k, [L̂i, x̂
2] = 0. (16)

If V is a function of r, then it must also be a function of r2. Let,

V (r) ≡ W (r2). (17)
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Because L̂i contains only one p̂α, it is easy to show that,

[L̂i,W (r2)] = W ′(r2)[L̂i, r
2] = W ′(r2)[L̂i, x̂

2] = 0, (18)

so indeed,

[L̂i, V (r)] = 0. (19)

(h). The Hamiltonian operator is,

Ĥ = T̂ + V̂ =
p̂2

2m
+ V (r). (20)

Because L̂i commutes with both T̂ and V̂ , it commutes with Ĥ. Furthermore, the definition

of L̂i in terms of elementary operators {x̂α} and {p̂β}: L̂i ≡ εijkx̂j p̂k, contains no explicit

dependence on t (that is, εijk is a constant factor), so,

∂L̂i

∂t
=

(
∂εijk

∂t

)
x̂j p̂k = 0. (21)

Therefore, in the Heisenberg picture,

dL̂i

dt
=

1

ih̄
[L̂i, Ĥ] +

∂L̂i

∂t
= 0 + 0 = 0. (22)

And 〈L̂i〉 is time independent.

2 Operator Functions (20 pt)

Question:

(a). Operator Â has eigenvalues {λi}. Let B̂ ≡ f(Â). Prove that B̂ has eigenvalues {f(λi)}.
(b). If operator Û satisfies,

Û Û+ = Û+Û = Î , (23)

it is called a unitary operator. Suppose Â is Hermitian. Prove exp(iÂt) (t ∈ R) is unitary.

Answer:

(a). Suppose,

Â|λi〉 = λi|λi〉, (24)
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and by definition,

f(Â) ≡
∞∑

n=0

f (n)(x = 0)

n!
Ân. (25)

Then,

B̂|λi〉 =
∞∑

n=0

f (n)(x = 0)

n!
Ân|λi〉 =

∞∑

n=0

f (n)(0)

n!
λi

n|λi〉 =

( ∞∑

n=0

f (n)(0)

n!
λi

n

)
|λi〉 = f(λi)|λi〉.

So the eigenvalues of B̂ are {f(λi)}.
(b). Define,

Û ≡ exp(iÂt) =
∞∑

n=0

(it)n

n!
Ân. (26)

When we take the Hermitian conjugate,

Û+ =
∞∑

n=0

(it)∗n

n!
Â+n =

∞∑

n=0

(−it)n

n!
Ân. (27)

The latter is because Â is Hermitian: Â+ = Â. So there is,

Û Û+ =

( ∞∑

n=0

(it)n

n!
Ân

) ( ∞∑

m=0

(−it)m

m!
Âm

)
=

∞∑

n=0

∞∑

m=0

(it)n(−it)m

n!m!
Ân+m. (28)

Define l = n + m, and we collect various terms of equal l, as,

Û Û+ =
∞∑

l=0

cl

l!
Âl, cl ≡

l∑

n=0

l!(it)n(−it)l−n

n!(l − n)!
. (29)

So cl is in fact the lth binomial expansion coefficient of (it− it)l, and would be zero unless

l = 0, and in which case it would be 1,

cl = δl0. (30)

So,

Û Û+ =
c0

0!
Â0 = Î , (31)

and Û is unitary for arbitrary Hermitian Â.
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3 Quantum Fluctuation (20 pt)

Question: Using Quantum Postulates 1 and 2, prove that the measurement variance of an

observable A is given by,

σ2(A) = 〈ψ|(Â− Ā)2|ψ〉, (32)

where |ψ〉 is the current state, and Ā ≡ 〈ψ|Â|ψ〉 is the measurement average.

Answer: The Quantum Postulates 1 and 2 are much more than simply stating that Ā =

〈ψ|Â|ψ〉. They in fact fully specify the distribution of measurement outcome. In the case

of Â having a discrete eigenvalue spectrum {an}, the probability of getting a particular

measurement outcome an is asserted to be Pn = |〈an|ψ〉|2. We have shown in class that,

∑
n

Pn = 1, Ā =
∑
n

anPn = 〈ψ|Â|ψ〉. (33)

The operational definition of measurement outcome variance is,

σ2(A) ≡ ∑
n

(an − Ā)2Pn. (34)

But it can be simplified as,

σ2(A) =
∑
n

(an − Ā)2|〈an|ψ〉|2

=
∑
n

(an − Ā)2〈ψ|an〉〈an|ψ〉

=
∑
n

〈ψ|(an − Ā)2|an〉〈an|ψ〉

=
∑
n

〈ψ|(Â− Ā)2|an〉〈an|ψ〉

= 〈ψ|(Â− Ā)2|
(∑

n

|an〉〈an|
)
|ψ〉

= 〈ψ|(Â− Ā)2Î|ψ〉
= 〈ψ|(Â− Ā)2|ψ〉. (35)

The proof in the case of Â having a continuous eigenvalue spectrum is similar and is left to

the reader.
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4 Heisenberg Uncertainty Principle (20 pt)

Question: Prove that,

σ2(A)σ2(B) ≥ 1

4
〈ψ|[Â, B̂]|ψ〉2 (36)

Answer: When Â and B̂ are Hermitian, let us define,

Ĉ ≡ λÂ + iB̂, λ ∈ R, (37)

Then,

Ĉ+ ≡ λÂ− iB̂, (38)

and,

Ĉ+Ĉ = λ2Â2 + iλÂB̂ − iλB̂Â + B̂2. (39)

For any |ψ〉, define |ψ′〉 ≡ Ĉ|ψ〉, there is,

0 ≤ 〈ψ′|ψ′〉 = 〈ψ|Ĉ+Ĉ|ψ〉. (40)

When we expand out Ĉ+Ĉ using (39), there is,

0 ≤ λ2〈Â2〉+ iλ〈[Â, B̂]〉+ 〈B̂2〉, (41)

which must hold true for any λ ∈ R. From elementary algebra we know this can only be

possible if,

〈Â2〉〈B̂2〉 ≥ 1

4
|〈[Â, B̂]〉|2. (42)

At this moment it is still not in the form (36) that we want. However, given any Â, B̂, we

can define new operators,

Â ≡ Â− Ā, B̂ ≡ B̂ − B̄. (43)

Since Ā,B̄ are real, Â, B̂ are still Hermitian. Furthermore, there is,

[Â, B̂] = [A,B]. (44)

Plugging Â,B̂ into (42), we will arrive at (36).
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5 False Question (15 pt)

Quantum Postulate 1 says that any measurement influences the state. However, suppose

there is a measurement A, but no one knows the result, then what happens?

In probability theory there is a difference between a priori and a posteriori probability. Show

that if A is measured first but no one knows the outcome, then an ensuing measurement B

would be no different from the case where A is not measured at all.

However, if we know the outcome of the A measurement is an - one of Â’s many eigenvalues,

then everything will be different, right?

As for the joint probability of getting a certain (an, bm) pair, does it make a difference

between A measured first, B second, and the converse?

Wrong Answer: Whenever a measurement is performed, the quantum state would instan-

taneously change from the previous |ψ〉 to one of Â’s eigenstate, |an〉, depending on which

an the experimentalist sees (the probability of getting a particular an is Pn = |〈an|ψ〉|2).
However, if the experimentalist was not able to see the outcome, then the current quantum

state remains unknown to him. What he can claim though, is that the probability that the

current quantum state being in |an〉 is Pn.

Therefore, if he continues to make the next measurement B, there is Pn probability that the

state is |an〉, and then the probability of getting a bm result is |〈bm|an〉|2. Therefore, the

total probability that a bm result is obtained is,

p =
∑
n

Pn|〈bm|an〉|2 =
∑
n

〈bm|an〉Pn〈an|bm〉. (45)

However, ∑
n

|an〉Pn〈an| =
∑
n

|an〉〈an|ψ〉〈ψ|an〉〈an| = |ψ〉〈ψ|. (46)

Thus,

p =
∑
n

〈bm|ψ〉〈ψ|bm〉 = |〈ψ|bm〉|2, (47)

as if A was not measured at all.

If the experimentalist knows it’s an, then of course the distribution of B would be |〈an|bm〉|2,
which is vastly different from |〈ψ|bm〉|2.
If Â and B̂ do not commute, then it makes a difference. The first joint probability is

|〈ψ|an〉|2|〈an|bm〉|2, the second is |〈ψ|bm〉|2|〈bm|an〉|2.
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