
22.51 Problem Set 9 (due Fri, Dec. 7)

1 Born’s Approximation

Question: Instead of using the heavier machinery of time-dependent perturbation theory,

the differential scattering cross-section dσ/dΩ between neutron and a static potential field

V (x) can be derived by solving merely the steady-state Schrodinger’s equation.

(a). Suppose ψ(x) is a solution to the one-body problem,

(
− h̄2∇2

2µ
+ V (x)

)
ψ(x) =

h̄2k2

2µ
ψ(x), (1)

and it has the following asymptotic behavior at large |x|,

ψ(x) = eik·x + f(θ)
ei|k||x|

|x| +O(|x|−2), (2)

where θ is the angle between x and the incident wave-vector k. Show that,

dσ

dΩ
= |f(θ)|2.

(b). We may rewite (1) as,

(
∇2 + k2

)
ψ(x) =

2µV (x)

h̄2 ψ(x). (3)

What are the general solutions {ψ0(x)} to,

(
∇2 + k2

)
ψ0(x) = 0, x ∈ R3,

and what is the Green’s function solution g(x) to,

(
∇2 + k2

)
g(x) = δ(x).

(c). Given the scattering problem context, pick the general solution ψ0(x), and write down

a formal “solution” to (3).

(d). Following the same procedure as in time-dependent perturbation theory, write down a
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series expansion for the exact solution.

(e). Take the leading term and take the large |x| limit, derive f(θ) in terms of V (x).

(f). Suppose,

V (x) = −2πh̄2

µ
aδ(x),

what is the total scattering cross-section and how should one then interpret a?

(g). Show by rigorous quantum mechanics the relationship between a and b, the free and

bound scattering lengths.

Answer:

(a). See Fig. 1. The incident beam eik·x does have finite width, which is enough to cover

the sample, but will not be received by the detector.
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Figure 1: The incident beam eik·x does have finite width.

The particle flux formula is,

j = − ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗) , (4)

since,

−∇ · j =
ih̄

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗)

=
ih̄

2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)

= ψ∗
(
ψ̇ − V ψ

ih̄

)
+ ψ

(
ψ̇∗ +

V ψ∗

ih̄

)

= ψ∗ψ̇ + ψψ̇∗
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= ρ̇. (5)

One could work out the scattered flux exactly, but that is not necessary because at large |x|,
f(θ)ei|k||x|/|x| behaves locally very much like a planewave eik′·x, with,

k′ ≡ |k|x
|x| ,

and amplitude f(θ)/|x|. The reason is because since,

∇ = er∂r +
eθ

r
∂θ +

eφ

r sin θ
∂φ,

the only O(r−1) term in (4) is from the radial derivative er∂r. Thus, the scattered flux must

be,

Φscattered

Φincident

=

∣∣∣∣∣
f(θ)

r

∣∣∣∣∣
2

,

compared to the incident flux because both are like planewaves. Therefore the number of

outgoing quanta per unit time in solid angle dΩ is simply,

dN

dt
= ΦscattereddS = Φscattered · r2dΩ = Φincident|f(θ)|2dΩ,

therefore,
dσ

dΩ
=

1

Φincident

dN

dΩdt
= |f(θ)|2.

(b). The general solutions are planewaves eik·x, ∀k ∈ {|k| = k}.
The Green’s functions g(x) are,

g(x) = −e±ik|x|

4π|x| .

However, the e−ik|x|/|x| branch is not physically possible (mathematically speaking, it does

not satisfy the boundary condition) because it represents spherically incoming wave. One

can check that,

(
∇2 + k2

) eik|x|

|x| =
(
r−2∂rr

2∂r + k2
) eikr

r

= r−2∂rr
2

(
ik

eikr

r
− eikr

r2

)
+ k2 eikr

r

= r−2∂r

(
ikreikr − eikr

)
+ k2 eikr

r
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= r−2
(
ikeikr − k2reikr − ikeikr

)
+ k2 eikr

r
= 0, r > 0. (6)

When r → 0, − eikr

4πr
∼ − 1

4πr
, which was previously shown to be the Green’s function to

∇2g(x) = δ(x) and has the same singular properties.

(c). Let us pick a particular planewave,

ψ0(x) = eik·x,

which is interpreted as the incident beam and a solution to (3) when V (x) = 0. Using the

Green’s function, the formal solution to (3) when V (x) 6= 0 can be simply written as,

ψ(x) = eik·x −
∫

dx′
2µV (x′)ψ(x′)

h̄2 · eik|x−x′|

4π|x− x′|

= eik·x +
∫

dx′Ṽ (x′)
eik|x−x′|

|x− x′|ψ(x′), (7)

where,

Ṽ (x) ≡ − µ

2πh̄2V (x),

is the reduced potential that has unit of length.

(d). The (7) solution for ψ(x) is not directly usable because ψ(x) itself is invoked in the

expression. But under the conditions that Ṽ (x) can be considered as small, one can use the

trick of iterative replacement,

ψ(x) = eik·x +
∫

dx′Ṽ (x′)
eik|x−x′|

|x− x′|e
ik·x′ +

∫
dx′Ṽ (x′)

eik|x−x′|

|x− x′|
∫

dx′′Ṽ (x′′)
eik|x′−x′′|

|x′ − x′′|e
ik·x′′ + ...,

which is in effect an expansion in orders of Ṽ (x).

(e). The leading order term is,

ψ(x) = eik·x +
∫

dx′Ṽ (x′)
eik|x−x′|

|x− x′|e
ik·x′ .

In the limit of large |x|: |x| À |x′|,

|x− x′| = |x| − x · x′
|x| +O

( |x′|2
|x|

)
,
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Let us define,

k′ ≡ k
x

|x| ,

then,

eik|x−x′| ≈ eik|x|e−ik′·x′ .

Also,
1

|x− x′| =
1

|x| +O
( |x′|
|x|2

)
.

Therefore,

ψ(x) ≈ eik·x +
∫

dx′Ṽ (x′)
eik|x|e−ik′·x′

|x| eik·x′ = eik·x + f(θ)
eik|x|

|x| ,

with,

f(θ) =
∫

dx′Ṽ (x′)eiQ·x′ , Q ≡ k− k′.

In other words, f(θ) is simply the spatial Fourier transform of Ṽ (x) in wavevector Q which

spans angle θ.

(f). Clearly Ṽ (x) = aδ(x) and f(θ) = a. Therefore the total scattering cross-section is 4πa2.

In a one-body problem where,

Ṽ (x) =




∞, |x| < a

0, |x| ≥ a
,

the quantum mechanical total scattering cross section turns out to be 4πa2 in the long-

wavelength limit (as compared to πa2 total scattering cross section in classical mechanics).

Therefore, a can be interpreted as the interaction cutoff distance between hard spheres.

(g). A two-body quantum mechanics problem,

(
− h̄2∇2

1

2m1

− h̄2∇2
2

2m2

+ V (x1 − x2)

)
Ψ(x1,x2) = ẼΨ(x1,x2),

can be transformed to,

(
− h̄2∇2

x

2µ
− h̄2∇2

X

2M
+ V (x)

)
Ψ(x,X) = ẼΨ(x,X),
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where,

x ≡ x1 − x2, X ≡ m1x1 + m2x2

m1 + m2

, µ ≡ m1m2

m1 + m2

, M ≡ m1 + m2,

so,

Ψ(x,X) = ψ(x)eiK·X, Ẽ = E +
h̄2K2

2M
,

with, (
− h̄2∇2

x

2µ
+ V (x)

)
ψ(x) = Eψ(x).

The scattering cross-section is clearly 0 when V = 0. Since,

(
∇2 + k2

)
ψ(x) =

2µV (x)

h̄2 ψ(x),

the leading order perturbation to ψ(x) is also proportional to µ. Therefore,

σbound =
(
1 +

mN

mA

)2

σfree,

in the long wavelength limit and when the Born approximation is valid.

2 Contrast Variation

Question: A certain element E has two isotopes, E41 and E44. E41 has spin 2h̄, E44 has spin

3h̄. The scattering lengths are,

b+
E41 = 1× 10−12cm, b−E41 = 3× 10−12cm, b+

E44 = −2× 10−12cm, b−E44 = −4× 10−12cm,

where + and − means spin aligned and anti-aligned between incoming neutron and the

nucleus, respectively.

(a). What are the coherent and incoherent scattering lengths for E41 and E44, suppose each

isotope appears in pure form, respectively?

(b). Suppose the natural abundance of E41 is 80% and that of E44 is 20%, calculate the

coherent and incoherent scattering lengths of pure natural E.

(c). Calculate the desired abundance of E41 in order to have only incoherent scattering.

(d). There is simple mixing rule for bcoh. Is there for binc? for b2
inc? (e.g., if there is 80% E41
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and 20% E44, is b2
inc(E) = 0.8b2

inc(pure E41) + 0.2b2
inc(pure E44)?)

Answer:

(a). For pure E41,

bcoh =
2× 2 + 2

4× 2 + 2
× 1 +

2× 2

4× 2 + 2
× 3 = 1.8

√
barn,

b2 =
2× 2 + 2

4× 2 + 2
× 1 +

2× 2

4× 2 + 2
× 9 = 4.2 barn,

so,

binc =
√

b2 − b2
coh = 0.9798

√
barn.

For pure E44,

bcoh =
2× 3 + 2

4× 3 + 2
× (−2) +

2× 3

4× 3 + 2
× (−4) = −2.8571

√
barn,

b2 =
2× 3 + 2

4× 3 + 2
× 4 +

2× 3

4× 3 + 2
× 16 = 9.1429 barn,

so,

binc =
√

b2 − b2
coh = 0.9899

√
barn.

(b).

bcoh = 0.8× 1.8 + 0.2× (−2.8571) = 0.8686
√

barn.

b2 = 0.8× 4.2 + 0.2× 9.1429 = 5.1886 barn,

so,

binc =
√

b2 − b2
coh = 2.1057

√
barn.

(c). Let the abundance of E41 be x, then,

bcoh = x× 1.8 + (1− x)× (−2.8571) = 0,

demands that x = 0.6135.

(d). There is no simple mixing rule for either binc or b2
inc. We can have isotopes of the same

binc, but if their bcoh’s are different, their mixed binc is going to be enhanced.
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3 Dynamic Structure Factor

Question:

(a). Calculate the thermally averaged self intermediate scattering function,

Fs(Q, t) ≡
〈
e−iQ·x̂(0)eiQ·x̂(t)

〉
,

and the self dynamic structure factor Ss(Q, ω) for ideal gas at temperature T .

(b). Do the same for a single harmonic oscillator of frequency Ω at temperature T .

Hint: Use the Baker-Hausdorff theorem.

Answer:

Let me do (b) first, and then by taking the Ω → 0 limit, we can obtain the ideal gas behavior.

(b). For 1D simple harmonic oscillator, we know that,

x̂(t) =

√
h̄

2mAΩ

(
â(t) + â†(t)

)
, â(t) = âe−iΩt, â†(t) = â†eiΩt,

in the Heisenberg picture. Therefore,

[x̂(0), x̂(t)] =
h̄

2mAΩ

[
â + â†, âe−iΩt + â†eiΩt

]
=

h̄

2mAΩ
2i sin Ωt =

ih̄

mAΩ
sin Ωt.

Since it is just a constant which commutes with any operator, we can use the Baker-Hausdorff

theorem,

e−iQx̂(0)eiQx̂(t) = exp


iQ

√
h̄

2mAΩ

[
(e−iΩt − 1)â + (eiΩt − 1)â†

]
+

iQ2h̄

2mAΩ
sin Ωt




= exp

(
iQ2h̄

2mAΩ
sin Ωt

)
D̂(α(t)), (8)

where D̂(α(t)) is the displacement operator, with,

α(t) ≡ iQ

√
h̄

2mAΩ
(eiΩt − 1).

We would like to calculate the thermal average 〈D̂(α)〉 using complete but non-orthogonal
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coherent states basis. The following identities will be used.

D̂(α)D̂(β) = e
1
2
(αβ∗−α∗β)D̂(α + β).

〈α|β〉 = eα∗β− 1
2
(|α|2+|β|2).

∫ d2α

π
|α〉〈α| = I.

〈n|β〉 = e−
1
2
|β|2 βn

√
n!

.

Now consider,

〈n|D̂(α)|n〉 =
∫ d2γ

π

∫ d2β

π
〈n|γ〉〈γ|D̂(α)|β〉〈β|n〉

=
∫ d2γ

π

∫ d2β

π
e−

1
2
|γ|2 γn

√
n!
〈γ|D̂(α)|β〉e− 1

2
|β|2 β∗n√

n!

=
∫ d2γ

π

∫ d2β

π
e−

1
2
(|γ|2+|β|2) (β

∗γ)n

n!
〈γ|D̂(α)D̂(β)|0〉

=
∫ d2γ

π

∫ d2β

π
e−

1
2
(|γ|2+|β|2) (β

∗γ)n

n!
e

1
2
(αβ∗−α∗β)〈γ|α + β〉

=
∫ d2γ

π

∫ d2β

π
e−

1
2
(|γ|2+|β|2) (β

∗γ)n

n!
e

1
2
(αβ∗−α∗β)eγ∗(α+β)− 1

2
(|γ|2+|α+β|2). (9)

Since,

∞∑

n=0

e
− nh̄Ω

kBT =
1

1− e
− h̄Ω

kBT

=
1

1− d
,

∞∑

n=0

e
− nh̄Ω

kBT
(β∗γ)n

n!
= exp

(
e
− h̄Ω

kBT β∗γ
)

= edβ∗γ, d ≡ e
− h̄Ω

kBT .

we have,

〈D̂(α)〉 = (1− d)
∫ d2γd2β

π2
e−

1
2
(|γ|2+|β|2)edβ∗γe

1
2
(αβ∗−α∗β)+γ∗α+γ∗β− 1

2
(|γ|2+|α|2+|β|2+α∗β+αβ∗)

= (1− d)e−
1
2
|α|2

∫ d2γd2β

π2
e−|γ|

2−|β|2+dβ∗γ+γ∗β+γ∗α−α∗β. (10)

The above is just a Gaussian integral in 4D. Let,

α ≡ αx + iαy, β ≡ βx + iβy, γ ≡ γx + iγy,

we have,

β∗γ = (βx − iβy)(γx + iγy) = βxγx + βyγy + i(βxγy − βyγx),
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γ∗β = γxβx + γyβy + i(γxβy − γyβx).

Thus, inside the exponential, the function is,

−
(

βx βy γx γy

)




1 0 −1+d
2

−1−d
2i

0 1 1−d
2i

−1+d
2

−1+d
2

1−d
2i

1 0

−1−d
2i

−1+d
2

0 1







βx

βy

γx

γy




+

(
−α∗ −iα∗ α −iα

)




βx

βy

γx

γy




, (11)

and since, ∫
dDx exp

(
−xTAx + bx

)
=

(π)D/2

√
det |A|

exp
(
−1

4
bTA−1b

)
,

the integral is straightforward, but cumbersome. Therefore using Maple we get,

〈D̂(α)〉 = (1− d)e−
1
2
|α|2 1

π2
· e−

d|α|2
1−d π2

1− d
= e−

1
2
|α|2e−

d|α|2
1−d = e−

|α|2(1+d)
2(1−d) . (12)

> restart: int(int(int( 
exp(-GX^2-GY^2-BX^2-BY^2+d*(BX-I*BY)*(GX+I*GY)+(GX-I*GY)*(BX+I*BY)
+(GX-I*GY)*a-conjugate(a)*(BX+I*BY)),GX=-infinity..infinity),GY=-i
nfinity..infinity),BY=-infinity..infinity);

,
e









/1 4

− − + + − + + + +4 d2 BX a 4 d BX a 4 a BX d 4 a BX 4 d2 BX2 8 d BX2 4 BX2 d2 a2 2 d a a a2

−d 1
π

( )/3 2

− +d 1
=− ( )csgn −d 1 1








,∞ otherwise
> int(exp(1/4*(4*d^2*BX*a-4*d*BX*a-4*conjugate(a)*BX*d+4*conjugate(a
)*BX+4*d^2*BX^2-8*d*BX^2+4*BX^2+d^2*a^2+2*d*a*conjugate(a)+conjuga
te(a)^2)/(d-1))*Pi^(3/2)/(-d+1)^(1/2), BX=-infinity..infinity);








e











d a a

−d 1
π2

− +d 1
=









csgn − + −

d2

−d 1

2 d

−d 1

1

−d 1
1

∞ otherwise
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Thus,

〈e−iQx̂(0)eiQx̂(t)〉
= exp

(
iQ2h̄

2mAΩ
sin Ωt− |α(t)|2(1 + d)

2(1− d)

)

= exp

(
iQ2h̄

2mAΩ
sin Ωt− Q2h̄

2mAΩ
(eiΩt − 1)(e−iΩt − 1)

(1 + d)

2(1− d)

)

= exp

(
Q2h̄

4mAΩ

(
eiΩt − e−iΩt − (2− eiΩt − e−iΩt)

1 + d

1− d

))

= exp

(
Q2h̄

4mAΩ

(1− d)eiΩt − (1− d)e−iΩt − 2(1 + d) + (1 + d)eiΩt + (1 + d)e−iΩt

1− d

)

= exp

(
Q2h̄

4mAΩ

2eiΩt + 2de−iΩt − 2(1 + d)

1− d

)

= exp

(
Q2h̄

2mAΩ

(eiΩt − 1) + d(e−iΩt − 1)

1− d

)
. (13)

At low T , d ∼ 0, so,

〈e−iQx̂(0)eiQx̂(t)〉 = exp

(
Q2h̄

2mAΩ
(eiΩt − 1)

)
= exp

(
− Q2h̄

2mAΩ

) ∞∑

n=0

1

n!

(
Q2h̄

2mAΩ

)n

einΩt,

and,

Ss(Q,ω) = exp

(
− Q2h̄

2mAΩ

) ∞∑

n=0

1

n!

(
Q2h̄

2mAΩ

)n

δ(ω − nΩ),

so the neutron is only able to deposit energy in quantas of h̄Ω.

At high T , d ∼ 1− h̄Ω
kBT

, so,

(eiΩt − 1) + d(e−iΩt − 1)

1− d
≈ kBT

h̄Ω

(
eiΩt + de−iΩt − 1− d

)
,

and we will find that the neutron is able to both extract and deposit energy, with the

probability of the latter a little bit greater.

In 3D, we would have,

〈e−iQ·x̂(0)eiQ·x̂(t)〉 =
3∏

i=1

exp

(
Q2

i h̄

2mAΩi

(eiΩit − 1) + di(e
−iΩit − 1)

1− di

)
,

where Ωx, Ωy, Ωz are the oscillator frequencies in three directions.

11



(a). Let us take the Ω → 0 limit. Since,

(eiΩt − 1) + d(e−iΩt − 1)

Ω(1− d)
≈ kBT

h̄Ω2

(
iΩt− Ω2t2

2
+ d(−iΩt)− d

Ω2t2

2

)

=
kBT

h̄Ω2

(
h̄Ω

kBT
iΩt− Ω2t2

)

= it− kBTt2

h̄
, (14)

we have,

〈e−iQ·x̂(0)eiQ·x̂(t)〉 = exp

(
−|Q|

2h̄

2mA

(
kBTt2

h̄
− it

))
.

> restart: simplify(int( 
exp(-Q^2*hbar/2/m*(k*T*t^2/hbar-I*t)-I*omega*t)/2/Pi, 
t=-infinity..infinity));








1

2

e











− /1 8
( )− +Q2 hbar 2 ω m

2

m Q2 k T
2

π
Q2 k T

m

=( )csgn Q2 m k T 1

∞ otherwise

Thus, the dynamic structure factor of ideal gas is,

S(Q, ω) = Ss(Q, ω) =
1√

2π|Q|2kBT/mA

exp

(
−(|Q|2h̄− 2mAω)2

8mA|Q|2kBT

)
,

with the loss peaking at,

ω0 =
h̄|Q|2
2mA

.

When T = 0, it is a free standing particle, and,

S(Q, ω) = δ

(
ω − h̄|Q|2

2mA

)
.

So,
d2σ

dΩdω
= b2

(
k′

k

)
S(Q, ω) = b2

(
k′

k

)
δ

(
ω − h̄|Q|2

2mA

)
,
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or,
d2σ

dΩdE ′ = b2

(
k′

k

)
δ

(
E − E ′ − h̄2|Q|2

2mA

)
.

At this moment it is important to remember what the dependent variables are. Recall that

in the derivation, we are lastly down to counting d3k′3 of the outgoing radiation, and it

is converted to spherical shell differential dE ′dΩ. Therefore, the dependent variables are

direction Ω (cos θ) and E ′ which are just indices for counting k′. A common mistake is to

think that Q and ω are somehow the dependent variables since S(Q, ω) is expressed in them.

It is not so. For example, the partial integration in ω of δ
(
ω − h̄|Q|2

2mA

)
gives 1 if Q and ω are

considered independent, but that is the wrong answer. The correct answer, when considering

the dependence of |Q|2 on ω for fixed cos θ, would give a factor different from 1.

h̄2|Q|2
2mA

=
h̄2|k− k′|2

2mA

=
h̄2|k|2
2mA

+
h̄2|k′|2
2mA

− h̄2k · k′
mA

=
h̄2k2

2mA

+
h̄2k′2

2mA

− h̄2kk′ cos θ

mA

,

so,

d

(
h̄2|Q|2
2mA

)
=

(
h̄2k′

mA

− h̄2k cos θ

mA

)
dk′,

and therefore, ∫
dE ′δ

(
E − E ′ − h̄2|Q|2

2mA

)
...

integration would give an extra factor,

h̄2k′
mN

dk′

h̄2k′
mN

dk′ +
(

h̄2k′
mA

− h̄2k cos θ
mA

)
dk′

=
mA

mN

k′
k

(mA+mN )k′
mNk

− cos θ
.

To get k′/k, we use,

E ′ =
h̄2|k′|2
2mN

=
h̄2|k|2
2mN

− h̄2|Q|2
2mA

=
h̄2|k|2
2mN

− h̄2|k− k′|2
2mA

=
h̄2|k|2
2mN

− h̄2|k|2
2mA

− h̄2|k′|2
2mA

+
h̄2k · k′

mA

,

or,

mA|k′|2 = mA|k|2 −mN |k|2 −mN |k′|2 + 2mN |k||k′| cos θ,

and so,

(mN + mA)k′2 − 2mN cos θk′k + (mN −mA)k2 = 0,

thus,

k′

k
=

2mN cos θ ±
√

4m2
N cos2 θ − 4(mN + mA)(mN −mA)

2(mN + mA)
.
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We take the + branch because k′/k should be positive, so,

k′

k
=

mN cos θ +
√

m2
N cos2 θ + m2

A −m2
N

mN + mA

.

Therefore,

dσ

dΩ
= b2

(
k′

k

) mA

mN

k′
k

(mA+mN )k′
mNk

− cos θ
= b2

mA

mN

(
k′
k

)2

(mA+mN )k′
mNk

− cos θ

=
mAb2

√
m2

N cos2 θ + m2
A −m2

N


mN cos θ +

√
m2

N cos2 θ + m2
A −m2

N

mN + mA




2

. (15)

> restart: m:=2: M:=5: evalf( int ( 2*Pi*((m*x + sqrt(m^2*x^2 + M^2 
- m^2)) / (m + M))^2 * M / sqrt(m^2*x^2 + M^2 - m^2), x = -1..1) - 
4*Pi*(M/(m+M))^2);

0.
> m:=1: M:=10.7: evalf( int ( 2*Pi*((m*x + sqrt(m^2*x^2 + M^2 - 
m^2)) / (m + M))^2 * M / sqrt(m^2*x^2 + M^2 - m^2), x = -1..1) - 
4*Pi*(M/(m+M))^2);

0.
> m:=3.9: M:=17.7: evalf( int ( 2*Pi*((m*x + sqrt(m^2*x^2 + M^2 - 
m^2)) / (m + M))^2 * M / sqrt(m^2*x^2 + M^2 - m^2), x = -1..1) - 
4*Pi*(M/(m+M))^2);

0.

It has been verified numerically to give the following total cross-section,

σ = 2π
∫ 1

−1
dx

mAb2

√
m2

Nx2 + m2
A −m2

N


mNx +

√
m2

Nx2 + m2
A −m2

N

mN + mA




2

= 4πb2
(

mA

mN + mA

)2

= 4πa2, (16)

in agreement with the simpler derivations using Born’s approximation.
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