
22.51 Quiz I (90 minutes, Chen&Kotlarchyk book only)

Question 1 (7 pt)

A heavy rod is rotating in a fixed plane, say xy plane, with constant angular frequency ω.

A ball of mass m is attached to the rod and is only able to slide along the rod, so the ball’s

only degree of freedom is its distance to the origin, r. Ignoring friction, and assuming the

ball is under the influence of a central potential V (r), derive the equation of motion for r(t)

using Lagrangian mechanics.
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Figure 1: Ball sliding along a rotating rod of constant angular frequency ω.

Answer: Given r(t), the velocity of the ball is,

v(t) = ṙer + ωreθ,

where er,eθ are unit vectors in the polar frame, so the kinetic energy is,

K =
m

2
v · v =

m

2

(
ṙ2 + ω2r2

)
,

thus the Lagrangian is,

L(r, ṙ) =
m

2

(
ṙ2 + ω2r2

)
− V (r).

Therefore,
∂L
∂r

= mω2r − V ′(r),
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and
∂L
∂ṙ

= mṙ,

so,
d

dt

(
∂L
∂ṙ

)
=

∂L
∂r

,

would give us,

mr̈ = mω2r − V ′(r).

where −V ′(r) is the ordinary force if the rod is not rotating and mω2r is the so-called

centrifugal force.

Question 2-4 deal with quantum mechanics, in which h̄ is taken to be 1.

Question 2 (7 pt)

Two particles of mass m1 and m2 interact with each other in 1D, and suppose their interaction

is a function of their separation x2 − x1 only, then (in the Schrodinger’s picture),

Ĥ = − 1

2m1

∂2

∂x2
1

− 1

2m2

∂2

∂x2
2

+ V (x2 − x1), |ψ〉 = ψ(x1, x2, t).

Find a symmetry operator for the system, and show that the total momentum,

p̂1 + p̂2 ≡ −i∂/∂x1 − i∂/∂x2

is a conserved quantity, i.e., 〈p̂1 + p̂2〉 is independent of time.

Answer: On class, when we study the eigenfunctions of a simple harmonic oscillator, I have

introduced the inversion operator P̂ ,

P̂ψ(x) ≡ ψ(−x),

as an example of symmetry operators, where because the potential energy mω2x2/2 and the

kinetic energy operators both commute with P̂ , there is,

[P̂ , Ĥ] = 0,

making P̂ a proper symmetry operator for that system. One consequence of this is that the
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eigenfunctions ψn(x) of Ĥ must have definite parity, either +1 or −1. Another consequence

is that the measurement average of any symmetry operator that does not explicitly depend

on time is time-independent, since there is,

d〈P̂ 〉
dt

=
1

ih̄

〈
[P̂ , Ĥ]

〉
+

〈
∂P̂

∂t

〉
.

In this problem, what one needs to show is that,

[p̂1 + p̂2, Ĥ] = 0, (1)

so its measurement average would not depend on time. p̂1 + p̂2 is then called a symmetry

operator for the system, or more precisely a symmetry operation generator for the the system.

To prove (1), let us observe that ∂/∂x1 commutes with both ∂2/∂x2
1 and ∂2/∂x2

2, and the

same is true for ∂/∂x2, therefore all we need to show is that,

[
∂

∂x1

+
∂

∂x2

, V

]
= 0.

It is easy to show that, [
∂

∂x1

, V (x1, x2)

]
=

∂V

∂x1

,

and [
∂

∂x2

, V (x1, x2)

]
=

∂V

∂x2

.

If V (x1, x2) takes the form V (x2 − x1) = V (µ), then

∂V

∂x1

=
dV

dµ
· ∂µ

∂x1

= −dV

dµ
,

∂V

∂x2

=
dV

dµ
· ∂µ

∂x2

=
dV

dµ
,

and they cancel if summed.

Question 3 (6 pt)
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Find 2× 2 matrix representations for Ĵx, Ĵy, Ĵz under the basis set {|ψ1〉, |ψ2〉},

|ψ1〉 =
∣∣∣∣
1

2
,
1

2

〉
, |ψ2〉 =

∣∣∣∣
1

2
,−1

2

〉
,

where,

Ĵ2

∣∣∣∣
1

2
,±1

2

〉
=

1

2

3

2

∣∣∣∣
1

2
,±1

2

〉
, Ĵz

∣∣∣∣
1

2
,±1

2

〉
= ±1

2

∣∣∣∣
1

2
,±1

2

〉
.

As a check of your result, you may verify that these 2 × 2 matrices, Jx, Jy, Jz, satisfy the

fundamental relations,

[Ji, Jj] = iεijkJk.

Answer: There is,

Ĵ+

∣∣∣∣
1

2
,−1

2

〉
=

√(
1

2

) (
3

2

)
−

(
−1

2

) (
1

2

) ∣∣∣∣
1

2
,
1

2

〉
=

∣∣∣∣
1

2
,
1

2

〉
, Ĵ+

∣∣∣∣
1

2
,
1

2

〉
= 0,

and,

Ĵ−
∣∣∣∣
1

2
,
1

2

〉
=

√(
1

2

) (
3

2

)
−

(
1

2

) (
−1

2

) ∣∣∣∣
1

2
,−1

2

〉
=

∣∣∣∣
1

2
,−1

2

〉
, Ĵ−

∣∣∣∣
1

2
,−1

2

〉
= 0.

therefore Ĵ+ and Ĵ− operators are closed within
{∣∣∣1

2
, 1

2

〉
,
∣∣∣1
2
,−1

2

〉}
basis set, and their matrix

representations are,

J+ =


 0 1

0 0


 , J− =


 0 0

1 0


 .

Since,

Ĵ+ ≡ Ĵx + iĴy, Ĵ− ≡ Ĵx − iĴy,

we have,

Ĵx =
1

2

(
Ĵ+ + Ĵ−

)
, Ĵy =

1

2i

(
Ĵ+ − Ĵ−

)
,

therefore,

Jx =


 0 1/2

1/2 0


 , Jy =


 0 −i/2

i/2 0


 , Jz =


 1/2 0

0 −1/2


 .

Bonus Question 4 (7 pt)
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A 1D free-particle of mass 1 can be described by ψ(x, t),

−1

2

∂2

∂x2
ψ(x, t) = i

∂

∂t
ψ(x, t),

which is related to its momentum representation φ(k, t) as,

ψ(x, t) =
1√
2π

∫ ∞

−∞
φ(k, t) exp(ikx)dk.

Suppose,

φ(k, 0) =

(
1√

2πσ2
exp

(
−(k − k0)

2

2σ2

))1/2

, k0 ∈ R.

Solve for ψ(x, t), and explain under what conditions of k0, σ and t can we consider ψ(x, t)

as representing a classical particle moving with speed k0.

Answer: φ(k, t) satisfies,

−i
k2

2
φ(k, t) =

∂

∂t
φ(k, t),

whose solution is,

φ(k, t) = exp

(
−ik2t

2

)
φ(k, 0),

therefore,

φ(k, t) =
1

(2πσ2)1/4
exp

(
−(k − k0)

2

4σ2
− ik2t

2

)
,

and so,

ψ(x, t) =
1√
2π

1

(2πσ2)1/4

∫ ∞

−∞
exp

(
−(k − k0)

2

4σ2
− ik2t

2
+ ikx

)
dk.

Because there is,

−(k − k0)
2 − 2iσ2k2t + i4σ2kx

= −k2 + 2k0k − k2
0 − 2itσ2k2 + 4iσ2xk

= −(1 + 2itσ2)k2 + (2k0 + 4iσ2x)k − k2
0

= −(1 + 2itσ2)

(
k2 − 2k0 + 4iσ2x

1 + 2itσ2
k

)
− k2

0

= −(1 + 2itσ2)


k2 − 2k0 + 4iσ2x

1 + 2itσ2
k +

(
k0 + 2iσ2x

1 + 2itσ2

)2



+(1 + 2itσ2)

(
k0 + 2iσ2x

1 + 2itσ2

)2

− k2
0
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= −(1 + 2itσ2)

(
k − k0 + 2iσ2x

1 + 2itσ2

)2

+

(1 + 2itσ2)

(
k0 + 2iσ2x

1 + 2itσ2

)2

− k2
0.

Thus, by completing the Gaussian integral, we have,

ψ(x, t) =
1

(2πσ2)1/4

√
2σ2

1 + 2itσ2
exp

(
(k0 + 2iσ2x)

2

4σ2(1 + 2itσ2)
− k2

0

4σ2

)
.

Thus,

|ψ(x, t)|2 =
1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

exp

(
(k0 + 2iσ2x)

2

4σ2(1 + 2itσ2)
+

(k0 − 2iσ2x)
2

4σ2(1− 2itσ2)
− k2

0

2σ2

)

=
1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

exp


2Re

[
(k0 + 2iσ2x)

2
(1− 2itσ2)

]

4σ2(1 + 4t2σ4)
− k2

0

2σ2




=
1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

exp

(
k2

0 − 4σ4x2 + 8k0σ
4xtσ2

2σ2(1 + 4t2σ4)
− k2

0

2σ2

)

=
1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

exp

(
k2

0 − 4σ4x2 + 8k0σ
4xt− k2

0 − 4t2σ2k2
0

2σ2(1 + 4t2σ4)

)

=
1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

exp

(−4σ4(x2 − 2k0xt + k2
0t

2)

2σ2(1 + 4t2σ4)

)

=
1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

exp

(−2σ2(x2 − 2k0xt + k2
0t

2)

1 + 4t2σ4

)

=
1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

exp

(−2σ2(x− k0t)
2

1 + 4t2σ4

)
, (2)

and one can verify that,

∫ ∞

−∞
|ψ(x, t)|2 dx =

1

(2πσ2)1/2

2σ2

√
1 + 4t2σ4

√
2π

1 + 4t2σ4

4σ2
= 1.

Because the maximal probability occurs at x = k0t always, one can consider ψ(x, t) as

representing a classical particle of speed k0 (the group speed) as long as the wave-pack

width,

∆x ≡
√

1 + 4t2σ4

2σ
,

is still microscopic.
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