
22.51 Quiz II (90 min, Chen&Kotlarchyk book only)

Question 1 (7 pt)

Solve for the far-field E(x, t), B(x, t), S(x, t) radiation of an oscillating magnetic dipole,

M(x, t) = m0 cos(ωt)ezδ(x).

and calculate the time-averaged radiation power.

Answer: Define m(t) ≡ m0 cos(ωt), and retarded field

[m] ≡ m
(
t− r

c

)
,

which satisfies,

∂r[m] = − [ṁ]

c
, ∂θ[m] = ∂φ[m] = 0.

The magnetic Hertz vector is,

Πm(x, t) =
[m]

r
ez =

[m]

r
(er cos θ − eθ sin θ).

We have,

∇ = er∂r +
eθ

r
∂θ +

eφ

r sin θ
∂φ,

therefore,

A = ∇× Πm =

∣∣∣∣∣∣∣∣∣

er eθ eφ

∂r r−1∂θ (r sin θ)−1∂φ

[m] cos θ/r −[m] sin θ/r 0

∣∣∣∣∣∣∣∣∣
= eφ

[
[ṁ]

cr
sin θ +O

(
1

r2

)]
,

and so,

E(x, t) = −1

c

∂A(x, t)

∂t
= −eφ

[m̈]

c2r
sin θ,

and,

B = ∇×A =

∣∣∣∣∣∣∣∣∣

er eθ eφ

∂r r−1∂θ (r sin θ)−1∂φ

0 0 [ṁ] sin θ/cr

∣∣∣∣∣∣∣∣∣
= eθ

[m̈]

c2r
sin θ +O

(
1

r2

)
,
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therefore the Poynting vector is,

S(x, t) =
c

4π
E(x, t)×B(x, t) ≈ − c

4π

(
[m̈]

c2r
sin θ

)2

eφ × eθ =
c

4π

(
[m̈]

c2r
sin θ

)2

er,

and the total time-averaged radiation power is,

P =
1

2
·
∫

r2dΩ
m2

0ω
4

4πc3r2
sin2 θ =

m2
0ω

4

3c3
.

Question 2 (6 pt)

Demonstrate in what sense the Poynting vectors from two harmonically oscillating radiation

sources (such as that of Problem 1) of different frequencies ω1 6= ω2, can be added directly.

Answer: In the time-averaged sense. Let the radiation fields from source 1 be E1(x, t),

B1(x, t), and the radiation fields from source 2 be E2(x, t), B2(x, t). Since the Maxwell’s

equations are linear, the correct solution when both sources are present is,

E(x, t) = E1(x, t) + E2(x, t), B(x, t) = B1(x, t) + B2(x, t),

therefore the Poynting vector is,

S(x, t) =
c

4π
E×B = S1(x, t) + S2(x, t) +

c

4π
E1 ×B2 +

c

4π
E2 ×B1,

where,

S1(x, t) ≡ c

4π
E1(x, t)×B1(x, t), S2(x, t) ≡ c

4π
E2(x, t)×B2(x, t),

are the Poynting vectors when the other source is not present. Therefore we see that the

Poynting vectors are not directly additive, at least not in the instantaneous sense. However,

we note that E1(x, t) and E2(x, t) oscillate temporally in frequencies of the sources, which

are ω1 and ω2, respectively. Therefore E1 × B2 and E2 × B1 give zero net contribution in

the long run. To see it, consider,

∫ T

0
cos(ω1t) cos(ω2t)dt

=
1

2

∫ T

0
[cos((ω1 + ω2)t) + cos((ω1 − ω2)t)] dt
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=
sin((ω1 + ω2)T )

2(ω1 + ω2)
+

sin((ω1 − ω2)T )

2(ω1 − ω2)
, (1)

thus, ∣∣∣∣∣
∫ T

0
cos(ω1t) cos(ω2t)dt

∣∣∣∣∣ ≤ 1

2|ω1 + ω2| +
1

2|ω1 − ω2| ,

e.g., bounded by a time constant. Therefore, the average contribution of the coupling terms

to the emitted power during the (0, T ) interval is,

〈∆P 〉T ∝
∫ T
0 cos(ω1t) cos(ω2t)dt

T
,

and it is going to vanish in the limit of large T .

Thus,

〈S(x)〉 = 〈S1(x)〉+ 〈S2(x)〉,

from two simple harmonic sources of different frequencies.

Question 3 (7 pt)

a. Prove

D̂†(α)âD̂(α) = â + α,

where

D̂(α) ≡ eαâ†−α∗â,

is the operator that creates a coherent state |α〉 out of vacuum.

Answer: Using the identity,

eÂB̂e−Â = e[Â, ]B̂ ≡ B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]]...,

and letting Â = −(αâ† − α∗â), B̂ = â, we have,

[Â, B̂] = [−(αâ† − α∗â), â] = α.

Since [Â, B̂] is just a constant, [Â, B̂] commutes with any operator, and therefore all the

higher-order expansion terms vanish, and we are left with,

e−(αâ†−α∗â)âeαâ†−α∗â = â + α,
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which is what we want to prove.

b. Since D̂(α) is called the displacement operator, it is reasonable to expect that they satisfy

the law of vector addition,

D̂(α)D̂(β) = λD̂(α + β).

Prove that this is indeed true.

Answer: Since,

D̂(α)D̂(β) = eαâ†−α∗âeβâ†−β∗â,

using the Baker-Hausdorff theorem,

eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂],

where we let,

Â = αâ† − α∗â, B̂ = βâ† − β∗â,

which is applicable here because the commutator,

[αâ† − α∗â, βâ† − β∗â] = αβ∗ − α∗β,

is just a number and commutes with any operators, including Â and B̂ themselves, we have,

eαâ†−α∗âeβâ†−β∗â = eαâ†−α∗â+βâ†−β∗â+ 1
2
(αβ∗−α∗β) = e(α+β)â†−(α∗+β∗)âe

1
2
(αβ∗−α∗β),

or,

D̂(α)D̂(β) = e
1
2
(αβ∗−α∗β)D̂(α + β).

Bonus Question (4 pt)

In classical field theory, the Poynting vector is defined as,

S(x, t) ≡ c

4π
E(x, t)×B(x, t).

Please propose a corresponding operator Ŝ(x, t) for quantum field theory, expressed in

{âkλ(t), â
†
kλ(t)}, and explain why your choice should be unambiguous.
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Answer: I propose,

Ŝ(x, t) =
c

4π

∑

k,λ

i

√
2πh̄ωk

V

[
âkλ(t)e

ik·x − â†kλ(t)e
−ik·x]

εkλ ×

∑

k′,λ′
i

√
2πh̄c2

V ωk′

[
âk′λ′(t)e

ik′·x − â†k′λ′(t)e
−ik′·x]

(k′ × εk′λ′). (2)

This transition from classical field variable S(x, t) to quantum field operator Ŝ(x, t) should

be unambiguous because âkλ(t), â†kλ(t) appear in the same âkλ(t)e
ik·x − â†kλ(t)e

−ik·x term

together in both Ê(x, t) and B̂(x, t), so in fact any Êi(x, t), B̂j(x, t) commute where i, j

are Cartesian indices, therefore the order of which appears first in the cross product doesn’t

matter.
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