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Light-Induced Quantum Anomalous Hall Effect on the 2D
Surfaces of 3D Topological Insulators

Haowei Xu, Jian Zhou, and Ju Li*

Quantum anomalous Hall (QAH) effect generates quantized electric charge
Hall conductance without external magnetic field. It requires both nontrivial
band topology and time-reversal symmetry (TRS) breaking. In most cases, one
can break the TRS of time-reversal invariant topological materials to yield
QAH effect, which is essentially a topological phase transition. However,
conventional topological phase transition induced by external field/stimulus
usually needs a route along which the bandgap closes and reopens. Hence,
the transition occurs only when the magnitude of field/stimulus is larger than
a critical value. In this work the authors propose that using gapless systems,
the transition can happen at an arbitrarily weak (but finite) external field
strength. For such an unconventional topological phase transition, the
bandgap closing is guaranteed by bulk-edge correspondence and symmetries,
while the bandgap reopening is induced by external fields. This concept is
demonstrated on the 2D surface states of 3D topological insulators like
Bi2Se3, which become 2D QAH insulators once a circularly polarized light is
turned on, according to the Floquet time crystal theory. The sign of quantized
Chern number can be controlled via the chirality of the light. This provides a
convenient and dynamic approach to trigger topological phase transitions and
create QAH insulators.

1. Introduction

Light has become a powerful tool for tuning material behaviors
without direct contact. A promising application actively explored
in recent years is light-driven phase transitions. Compared
with conventional mechanical, thermal, electrical, or electro-
chemical approaches, using light as an external driving force is
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advantageous as light can be noncontact,
nondestructive, and ultrafast. There are
already several theoretical proposals and
experimental observations that light (or fo-
cused laser pulses) can trigger structural
phase transitions in both 3D bulk materials
and low-dimensional nanostructures.[1–3]

In addition, light can also change the
electronic structure and induce electronic
phase transitions. In insulators or semi-
conductors, above-bandgap light can ex-
cite electron-hole pairs, and the system
would acquire metallic properties in e.g.,
carrier transports. In a sense, this can be
regarded as an insulator-to-metal transi-
tion. Indeed, the reverse process, metal-
to-insulator phase transition under light,
which is more counter-intuitive, has also
been proposed.[4]

In recent years, band topological orders
(characterized by, e.g., Z2 number) has be-
come an important paradigm for material
classifications. To date, hundreds of mate-
rials have been predicted to possess non-
trivial electronic band topologies,[5–7] and

some of them have already been fabricated and demonstrated
in experiments. However, the quantum anomalous Hall (QAH)
effect[8,9] characterized by the Chern number  (∈ ℤ), is still chal-
lenging for experimental observations. The QAH effect features
an integer quantum Hall conductance 𝜎xy =  e2

h
without external

magnetic field, where e is the electron charge and h is the Planck
constant. Notably, QAH insulators are rare in nature, due to two
stringent, necessary, but not sufficient conditions, namely 1) in-
verted band structures near the Fermi level and 2) broken time-
reversal symmetry (TRS).[9] The first practical model for QAH in-
sulators was proposed by Haldane.[8] Then it was demonstrated
that introducing magnetic dopant atoms into topological insu-
lators (TIs) could break the TRS and lead to the QAH effect.[10]

In 2009, Chang et al. performed the first successful experiment
and observed the QAH effect in Cr- or V-doped (Bi, Sb)2Te3 thin
films at very low temperature (≈80 mK).[11] However, such ex-
trinsic doping requires careful control over the impurity mag-
netic sites and interactions. Recently, it was found that intrinsic
QAH effect can be observed in MnBi2Te4 thin films at an elevated
temperature of 4 K.[12–14] Despite these advances, more experi-
mentally accessible materials and novel mechanisms to realize
and observe QAH effect at high temperatures still need to be ex-
plored. In this work, we demonstrate that under circularly polar-
ized light (CPL), quantum phase transition and 2D QAH effect
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can be induced and controlled on the gapless surfaces of 3D TIs
such as Bi2Se3. We theoretically and computationally analyzed
how the surface states evolve with light illumination and demon-
strate how the anomalous Hall conductivity arises on the surfaces
of TIs. We clarify that the Hall conductance under CPL only exists
on the top and bottom layers of the Bi2Se3 slab, while the middle
layers remain silent. Our work could provide more detailed evi-
dence for careful experimental verifications and potential appli-
cations. In addition, we propose an unconventional pathway for
topological phase transitions. We point out that in principle, an
arbitrarily weak external field would be able to induce topological
phase transitions in gapless systems, in contrast to the conven-
tional topological phase transitions, where a finite and usually
large external field is required. This unconventional topological
phase transition is applicable in many gapless systems beyond
the surface states of TIs.

2. Results

Considering the interaction between electrons and monochro-
matic light with frequency Ω, the electronic system has a
time-periodic Hamiltonian H(t) = H(t + T), where T ≡ 2𝜋

Ω
is the

period. The temporal periodicity is reminiscent of the spatial
periodicity in crystals (translational symmetry), and can be
systematically treated with the Floquet time-crystal theory[15–18]

analogous to Bloch’s theorem. Intuitively, there can be virtual
interactions between the system at time t and its temporal
images at t + mT (m ∈ ℤ), similar to the interaction between
an atom and its spatial image in neighboring unit cells. Such
interaction provides a dynamical tool for tuning the properties
of the system. When 1) the periodic perturbation is weak, and 2)
its frequency Ω is much higher than the observational frequency
(energy) scale so that no resonant transitions can happen, one
can apply the high-frequency (van Vleck’s) expansion, and obtain
an effective time-independent Floquet Hamiltonian,

HF ≈ H̃0 +
∑

m≠0

[
H̃

−m
, H̃

m]
2mΩ

(1)

where H̃m = 1
T

∫ T
0 dt H(t)eimΩt is the Fourier transform of H(t).

Here we only keep the lowest-order terms in the van Vleck’s ex-
pansion. Utilizing the Floquet theory, it has been demonstrated
that the electronic structures of the materials can be controlled
with light,[19,20] and particularly, topologically trivial materials
could become topologically nontrivial under light illumination
without structural (ionic) changes.[21–24] For example, the anoma-
lous Hall effect under CPL in graphene has been proposed[21] and
observed recently.[25] It has also been proposed that light could in-
duce effective spin-orbit coupling and trigger the quantum spin
Hall to QAH transition in checkerboard antiferromagnetic super-
conductor FeSe monolayer.[26] However, the transition requires
ultra-strong light with AC electric field strength on the order of
1 V Å−1. Besides, free-standing FeSe monolayers are challeng-
ing to fabricate. Hence, it is desirable to explore the light-induced
QAH effect 1) under lower light intensity and 2) in materials with
better experimental feasibility. In this work, we propose that un-
der CPL the 2D surface states of 3D Z2-TIs could show QAH ef-
fect. A unique advantage of starting from the 2D surface states of

TIs is that the intensity of the CPL required to trigger the quan-
tum phase transition can be arbitrarily weak. This is because the
2D TI surface states are gapless by themselves and could easily
transit to QAH insulators once their bandgaps are opened. This
property may make experimental observations significantly eas-
ier. From a practical point of view, this could also reduce light
absorption and the possible heating effects, especially when the
light frequency is below the bulk bandgap and the electron-hole
pair generation can be significantly reduced. Besides, the sur-
face states are particularly sensitive to light at low frequencies
(e.g., infrared or terahertz), and may find applications in light
detection.

It is well known that topological electronic phase transitions
can be triggered by external stimuli (denoted as F here), such
as strain, electric field, light, etc. Except for some rare cases,[27]

a common and prominent feature of conventional topological
phase transitions is that the bandgap of the material needs to
close at a critical strength of the external field (F = Fcri) and then
reopen as the field strength further increases (F > Fcri). On two
sides of the critical strength (F < Fcri and F > Fcri), the system
usually has different topological properties, and the topological
phase transition occurs at F = Fcri (Figure 1a). This picture holds
in the case of the transition from time-reversal symmetric TIs
to QAH insulators as well. The TRS breaking field (induced by
magnetic doping, etc.) needs to reach a critical value Fcri to trig-
ger QAH phase. When the TRS breaking field is weak (F < Fcri),
the Hall conductance remains zero in the system, even if the
TRS is broken.[28] This is verified in the case of both magnetic
doping[10] and CPL irradiation,[26] where a finite critical external
field strength is required to close and reopen the bandgap.

Notably, the magnitude of the critical field strength Fcri is
usually not small. For example, it is on the order of a few percent
elastic strain,[29] a field strength of 1 V Å−1 in the case of static
electric field,[30] and an intensity of 1012 W cm−2 in the case
of light-induced phase transitions.[26] Such large critical field
strengths hinder the observation and applications of topological
phase transitions, and may also induce unwanted side effects.
As discussed previously, when the field strength goes from F = 0
to F = Fcri, the bandgap reduces from the intrinsic value down to
zero. Hence, a natural speculation is that, if the system is initially
gapless, then the topological phase transition can happen at zero
field strength (Fcri = 0), as the bandgap closing process is not
required any more. In this case, once the external field is turned
on (arbitrarily small strength), the system would immediately
open its bandgap and transit to a different topological phase (Fig-
ure 1b). This can be understood with a thermodynamic phase
transition picture. For the conventional topological phase transi-
tions shown in Figure 1a, the initial system is located at a local
minimum on the transition path, thus a finite Fcri is required
to bring the system onto the (electronic) transition saddle point.
On the other hand, if the topological phase transition starts from
a gapless phase (Figure 1b), then the system is initially located
on the transition saddle point, thus Fcri can be arbitrarily small.

Fortunately, some systems are guaranteed to be gapless. For
example, the 2D surface states of a 3D Z2-TI are protected to be
gapless when interfaced with topologically trivial systems (such
as vacuum). This is because when continuously connecting
two systems with different band topologies, the bandgap must
close in between. Such gapless surface states are robust against
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Figure 1. Two types of topological phase transitions. a) Conventional topological phase transition. The bulk bandgap closing and reopening processes
are both triggered by external field F. And the topological phase transition occurs at a critical field strength Fcri, where the bandgap just closes. b) Un-
conventional topological phase transition. The bandgap closing is guaranteed by bulk-edge correspondence, symmetries, etc., whereas the bandgap
reopening is induced by external field. Once the bandgap is opened, the system can change into a different topological state.

perturbations, disorders, and impurities that preserve TRS.[31–33]

However, when TRS is broken, the surface bandgaps could open
and the QAH effect may arise. Therefore, one could start from
these gapless surface states and trigger the QAH effect with CPL,
which breaks TRS. Note that this topologically protected gapless
state is different from graphene, since the latter one is not
immune to external doping and requires high-quality fabrication
process. Here we first study this effect with a minimal model
Hamiltonian[34] that can describe the surface states of TIs,
HSS(k) = ℏvF(kx𝜎y − ky𝜎x), which is essentially a 2D Dirac
Fermion. Here vF is the velocity of the Dirac Fermion, and 𝜎i
(i = x, y, z) are the Pauli matrices. One can derive the effective
Floquet Hamiltonian (see Supporting Information) under CPL
irradiation as

HF
SS

(k) = ℏvF

(
kx𝜎y − ky𝜎x

)
±

e2v2
FA2

ℏΩ
𝜎z (2)

where + and − correspond to right- and left-handed CPL, respec-
tively. A and Ω are the vector potential and the angular frequency
of the CPL, respectively. The last term is induced by the CPL, and
it represents an exchange field that breaks the TRS and opens a

bandgap of
e2v2

FA2

ℏΩ
. It is well-known that Equation (2) describes

QAH insulators[8,35] with a Chern number of  = ±1. Note that
here A can be arbitrarily small. Besides, these results remain the
same when the higher order terms are incorporated in the k · p
model to reflect the warping from real lattice symmetries.[36]

To illustrate the above toy model in a real material, we take bulk
Bi2Se3 as an example, which is a well-studied Z2-TI.[34,37] First-
principles density functional theory calculation is performed to
reproduce its electronic band structure more accurately than the
toy model Hamiltonian above. The atomic structure of Bi2Se3
(Figure 2a) has a space group of R3̄m and has a layered structure
along the z direction. Each layer is constituted by five atom layers

(Se-Bi-Se-Bi-Se), and is dubbed a quintuple layer (QL). The bulk
of Bi2Se3 has a bandgap of ≈0.3 eV,[34,37] while the surface states of
Bi2Se3 are gapless. In Figure 2b we plot the electronic dispersion
of its [111] surface, where a gapless Dirac dispersion at the Γ̄ point
can be seen. We now add a CPL propagating along the z direction,
with time-dependent vector potential A(t) = A(cos Ωt, 𝜂sin Ωt, 0),
where 𝜂 = + 1 and − 1 correspond to left- and right-handed CPL,
respectively. We take ℏΩ = 5 eV for the following calculations,
which is much higher than the frequency (energy) range of in-
terest in this work. Here we would like to remark that a smaller
frequency (especially below the bandgap ≈0.3 eV) may be more
favorable in experiments. We adopt Ω = 5 eV mainly from a
computational point of view, as the theoretical error from the
van Vleck’s expansion would be smaller at this high frequency.
In Figure 2c we plot the surface spectrum function under left-
handed CPL with intensity of eA

ℏ
= 0.1 Å−1 (corresponding to

an electric field strength of E = 5 V nm−1), which is calculated
based on the Floquet formalism (see Supporting Information). A
bandgap of Eg ≈ 20 meV can be clearly observed. We then adjust
the light intensity and explore its relationship with the bandgap.
When the light is not too strong, the bandgap scales as Eg∝A2∝I,
where I is the light intensity (Figure 2d). This relationship is
intuitive as I characterizes the strength of TRS breaking. Also,
the bandgap opening is a second-order nonlinear effect induced
by the photo-dressing of the electronic states, hence Eg should
be linearly proportional to I, which is also proportional to the
number of photons irradiated. However, for a strong light with
eA
ℏ

≳ 0.2 Å−1, the fundamental bandgap tends to decrease as the
light intensity increases. When the light is strong enough, the
system becomes metallic. This is due to the interplay between
different orbitals in Bi2Se3, and is absent when one uses a
low-energy effective Hamiltonian as described above, which
involves only a subset of the atomic orbitals near the Fermi level.
On the other hand, when a linearly polarized light is applied,
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Figure 2. a) Atomic structure of Bi2Se3. The surface state spectrum of Bi2Se3 under b) no light and c) CPL with field strength eA
ℏ

= 0.1 Å−1, respectively.
A bandgap of 20 meV can be seen in (c). Note that the colormap in (b, c) is in logarithmic scale. d) Bandgap of the surface states of Bi2Se3 as a function
of the CPL strength. The bandgaps are calculated with a slab model with 24 QLs.

which does not break TRS, the surface states remain gapless
(Figure S1, Supporting Information).

Usually, bandgap closing and opening correspond to topolog-
ical phase transitions. To quantify the topological nature of the
Bi2Se3 surface state under CPL, we calculate its Hall conductance,
according to the Kubo formula,

𝜎ab =
e2

ℏ

∑
n≠m ∫BZ

dk
(2𝜋)2

(
fnk − fmk

) Im {⟨mk|va|nk⟩⟨nk|vb|mk⟩}(
𝜔mk − 𝜔nk

)2

(3)

Here |nk〉, 𝜔nk and fnk are the eigenstates, eigenvalues (band
frequency), and occupancy of the n-th band of the Floquet Hamil-
tonian HF(k), respectively. va = 1

ℏ

𝜕HF

𝜕ka
with a = x, y is the velocity

operator. A slab model is used to calculate the Hall conductance.
Specifically, we first build an intrinsic Hamiltonian H for Bi2Se3
from ab initio calculations, and then evaluate the effective Hamil-
tonian HF under light using the van Vleck’s expansion. In the
current case, we need to resolve the contributions to the conduc-
tivity from each QL in the system. We define a spatial projection
operator Pl =

∑
i∈l |𝜓i⟩⟨𝜓i| . Here |𝜓 i〉 are atomic orbitals, and the

summation runs over all orbitals centered on the l-th QL. Then
we replace the current operator va with Plva, which corresponds
to the current localized on the l-th QL. In this way, a layer-resolved
conductance 𝜎 l

ab can be obtained. Note that by summing over l,
the total conductance of the whole slab can be recovered. Here
we would like to note that in the periodically driven system, the
electrons are usually out-of-equilibrium. As a result, Equation (3)
should be considered as an approximation to the dynamic Hall
conductivity, with a correction up to the order of (A2). Such
an approximation requires[38] that 1) the frequency of light is
off-resonance so that the direct interband transitions is marginal;
2) the intensity of light A2 is small. Both of them are satisfied
in the present work. In general cases where resonant inter-
band transitions can happen, or A2 is large, the occupation of the
Floquet bands can significantly deviate from the Fermi-Dirac dis-
tribution and one should apply the Floquet theory in a more rigor-
ous fashion.[39–41] Generally speaking, the Hall conductivity is ex-

pected to be nonzero, but it may deviate from the quantized value,
depending on the actual experimental conditions. We would like
to note again that the choice of light frequency Ω = 5 eV in this
work is mainly from a theoretical and computational standpoint,
but the essence of our results holds true at lower frequencies. At
low frequencies, a bandgap of 20 meV can be obtained under a
small electric field strength (see Supporting Information). Actu-
ally, in Ref. [42] a CPL with Ω = 0.12 eV and E = 2.5 × 107 Vm−1

was used, and a bandgap of Eg ≈ 50 meV was observed on the sur-
faces of Bi2Se3. Under these conditions, our ab initio calculation
predicts a bandgap of Eg ≈ 35 meV according to the van Vleck’s
expansion. This demonstrates that the van Vleck’s expansion can
give a qualitatively correct result even with low light frequency.

We first use a slab model with 24 QLs, which is thick enough
to rule out the interaction between the top and bottom surfaces.
Under left-handed CPL with eA

ℏ
= 0.1 Å−1, the calculated layer-

resolved Hall conductance 1
2
(𝜎 l

xy − 𝜎 l
yx) is shown in Figure 3. Here

the green dots represent the layer-resolved conductance, whereas
the red dots show the total conductance measured from the first
QL to the l-th QL, that is,

∑l
i = 1

1
2
(𝜎i

xy − 𝜎i
yx). From Figure 3a, one

can see that the whole slab system has a quantized Hall con-
ductance of − e2

h
. Remarkably, only the top and bottom surfaces

(roughly 6 QLs) contribute to 𝜎xy; each gives −0.5 e2

h
. Under right-

handed CPL, the Hall conductivity flips its sign (Figure 3b). Thus,
the system has Chern number  = +1 and − 1 under right- and
left-handed CPL, respectively. This demonstrates that the whole
slab becomes a QAH system when the bandgap is opened under
CPL irradiation. Hence, the light serves as an effective SOC in-
teraction. The strength and sign of this effective SOC can be fine-
tuned via light intensity and handedness. This is different from
the usual atomic SOC interaction, which is determined mainly
by the atomic number and is also positive, leaving little room
for tunability. On the other hand, QLs in the middle of the slab
remain silent and have almost zero Hall conductance. We also
calculated the spin Hall conductance, and find that each mid-
dle QL gives a spin Hall conductance of 0.36 ℏ

2e
e2

h
(see Supporting

Information), which is close to the layer-resolved spin Hall con-
ductance in a bulk Bi2Se3. This again suggests that although the
CPL breaks the TRS in the middle QLs, it is not strong enough to
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Figure 3. Layer-resolved Hall conductance of a Bi2Se3 slab with 24 QLs under a) left-handed and b) right-handed CPL with eA
ℏ

= 0.1 Å−1. The top and

bottom surface each contributes 0.5 e2

h
, and the whole slab is a QAH insulator. The green dots represent layer-resolved Hall conductance of each layer

indexed by l, while the red dots are summation of Hall conductance from the 1st (top) to the lth layers. c) A schematic illustration of the Bi2Se3 slab
under light.

trigger the phase transition to the QAH insulator with the con-
ventional pathway depicted in Figure 1a. However, the transition
can be triggered on the surfaces with the unconventional path-
way in Figure 1b, because one does not need a finite critical field
to close the bandgap on the surfaces.

To better understand the thickness effect and demonstrate the
benefit of using the gapless surface states, we consider a thin slab
of Bi2Se3 as a comparison. In the thin-slab scenario, the quantum
tunneling between the top and bottom surface states leads to a
mass term and opens a bandgap. Specifically, the bandgap of a
slab with 6 QLs is around 4 meV. When we turn on the CPL, the
bandgap gradually decreases (Figure 4), but the Hall conductance
remains zero until the bandgap closes at a critical field strength
eAcri

ℏ
≈ 0.05 Å−1. With eA

ℏ
> 0.05 Å−1, the system becomes a QAH

Figure 4. The bandgap (left y-axis) and Hall conductance (right y-axis) of a
Bi2Se3 slab with 6 QLs as a function of the field strength of the left-handed
CPL. The system has finite bandgap and zero Hall conductance before
light illumination. A transition to QAH insulator happens at eA

ℏ
≈ 0.05 Å−1,

where the bandgap closes and reopens.

insulator with Hall conductance of − e2

h
. This is a vivid illustration

of the conventional topological phase transitions depicted in Fig-
ure 1a, which cannot happen below a critical field strength. When
we use a thicker slab, then the bandgap → 0, the critical field
strength → 0, and we recover our main proposition. On the other
hand, if we use a thinner slab, then the critical light intensity re-
quired to trigger the phase transition would be even higher. For
example, if we use 3 QLs, then the intrinsic bandgap is around
50 meV, and the transition to a QAH state cannot happen even
when eA

ℏ
is 0.15 Å−1.

3. Discussion and Conclusion

Before concluding, we would like to make several remarks. First,
the influence of CPL can also be interpreted as being caused by
the inverse Faraday effect.[43] It is well-known that the CPL can in-
duce an effective magnetic field (or equivalently, an effective mag-
netization), which would naturally induce a Hall conductance.
This is also consistent with the analysis above that CPL induces
an exchange interaction (Equation (2)). On the other hand, in Ref.
[43] it was demonstrated that not only a CPL but also a linearly po-
larized light could lead to a nonzero static magnetization. This
occurs when the frequency of the linearly polarized light is above
the electronic bandgap. In this case, the electron interband transi-
tions would cause energy dissipations, which breaks the TRS ac-
cording to the second law of thermodynamics.[43] From this point
of view, a linearly polarized light might also lead to the QAH ef-
fect on the surfaces of topological materials, provided that the dis-
sipations are taken into consideration.[43,44] Such possibility will
be studied in a future work.

Second, the unconventional topological phase transition may
be used for light detection, especially in the low-frequency range
(e.g., terahertz). As discussed above, the bandgap opened by the
CPL is Eg ∝ A2

Ω
∝ I

Ω3
, where I and Ω are intensity and frequency

of the light, respectively. The Eg∝Ω−3 scaling law indicates that
the surface states are particularly sensitive to light with relatively
low frequencies. This should be compared with conventional
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approaches for light detection, whose sensitivity usually de-
creases as the light frequency decreases. Low frequencies below
the bulk bandgap have another advantage that the absorption in
the bulk can be avoided. Of course, at very low frequencies, one
should use the Floquet theory in a more formal way than the high-
frequency van Vleck’s expansion used in the current work, but
the stronger sensitivity at low frequencies should be qualitatively
true. In addition, at very low frequencies, other unwanted pro-
cesses, such as the coupling with phonons, may come into play.
A thorough consideration of these effects will be the focus of the
future works. Besides, the sharp jump of the Hall conductance
𝜎xy from 0 to e2

h
can be detected by optical approaches such as

magneto-optical Kerr or Faraday rotation, which can make a pos-
sible all-optical light detection device.

Finally, this unconventional topological phase transition may
also apply to other gapless systems, such as the surface states
of topological crystalline insulators[45,46] or Dirac semimetals.[47]

In these systems, the zero bandgaps are protected by crystal spa-
tial symmetries, hence the topological properties may strongly
couple with phonons, which can break certain crystal symme-
tries. Thus, these systems could be ideal platforms for studying
phonon-dressed electronic states dynamically.

In conclusion, we demonstrate that the 2D surface states of
3D TIs can transit to QAH insulators under CPL irradiation. A
prominent feature is that the critical light strength required to
trigger the surface electronic-state phase transition can be arbi-
trarily small since the surface bandgap is already closed accord-
ing to the bulk-edge correspondence. Such an unconventional
topological phase transition can make easier experimental obser-
vations of QAH effects under high temperature, and may find
practical applications such as light detection. Intuitively, one may
think of the CPL as generating effective magnetism on the gap-
less surface,[43,44] thus giving rise to the QAH effect.
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1 Methods

1.1 Ab initio calculations

The first-principles calculations in this work are based on density functional theory (DFT) [1, 2]

implemented in Vienna ab initio simulation package (VASP) [3, 4]. The exchange-correlation interac-

tions are treated by generalized gradient approximation (GGA) in the form of Perdew-Burke-Ernzerhof

(PBE) [5]. Core electrons are treated with projected augmented wave (PAW) method [6], while the

valence electrons are treated by a plane wave basis set with cutoff energy of 300 eV for Bi2Se3. The

first Brillouin zone is sampled by a 13× 13× 5 Γ-center k-mesh for the conventional standard unitcell

of Bi2Se3.
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1.2 Tight-binding Hamiltonian

The Bloch wavefunctions from DFT calculations described above are then used to build a tight-

binding Hamiltonian with the Wannier90 package [7]. The atomic orbitals are defined with

|nR〉 =
1

N

∑
k

e−ik·R
J∑

m=1

Uk
mn|mk〉 (S1)

where |mk〉 is the Bloch wavefunctions from DFT, R are Bravais lattice vectors, J is the number of

atomic orbitals in a unit cell. We use the px, py and pz orbitals of Bi and Se to build the tight-binding

Hamiltonian. Uk
mn is a unitary transformation. Note that when using Wannier90 we did not minimize

the spread the wavefunctions (by setting num iter = 0) in order to avoid incorrectly mixing spin up

and down states of the spinor wavefunctions from VASP.

The time-independent tight-binding wavefunctions are

HmnR = 〈m0|H|nR〉 (S2)

1.3 Floquet theory

According to the Peierls substitution, under a periodic field A(r, t), the time-dependent tight-

binding Hamiltonian should become

〈m0|H̃(t)|nR〉 = 〈m0|H|nR〉e−
ie
~

∫ τm
τn+R

A(r,t)·dr

= 〈m0|H|nR〉e ie
~ A·(R+τn−τm)

(S3)

where τn is the center of the orbital |n0〉, e = −|e| is the charge of the electron. Here we have assumed

that A is spatially uniform.

Then as usual, the Bloch waves can be built from the atomic orbitals with

|nk〉 =
1√
N

∑
R

eik·(R+τn)|nR〉 (S4)

After some algebras, one can obtain the time-dependent Hamiltonian in the basis of Bloch waves as

H̃(k, t) = 〈mk|H̃(t)|nk〉

=
∑
R

e(k+ e
~A)·(R+τn−τm)〈m0|H|nR〉

= H
(
k +

e

~
A(t)

) (S5)
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For a A periodic in time with periodicity T , the Fourier transform of H̃(k, t) should be

H̃m(k) =
1

T

∫ T

0

e−imωtH̃(k, t)dt

=
1

T

∫ T

0

e−imωtH
(
k +

e

~
A(t)

)
dt

(S6)

where Ω = 2π/T is the angular frequency. Then an effective Floquet Hamiltonian in the high frequency

approximation is [8, 9, 10, 11]

HF
eff = H̃0 +

∑
m 6=0

[H̃−m, H̃m]

2m~Ω
(S7)

One straightforward method for obtaining H̃m(k) is to numerically compute the time integral in

Eq. (S6). An advantage of this method is that all frequency components can be obtained in the same

fashion, and the Floquet Hamiltonian HF with arbitrary order can be obtained. Another method that

is computationally more efficient is to expand Eq. (S6) as

H̃(k, t) = H
(
k +

e

~
A(t)

)
= H(k) +

( e
~

) ∂H
∂ki

Ai +
1

2

( e
~

)2 ∂2H

∂ki∂kj
AiAj + · · ·

(S8)

Assuming that Ai is monochromatic, to obtain a HF
eff up to the order of A2, we only need to keep

the first three terms in Eq. (S8), and m = 1 in Eq. (S7). Let

Ai = A0
i cos(Ωt+ φi)

= A0
i

ηie
iΩt + η∗i e

−iΩt

2

(S9)

where ηi = eiφi . One can obtain that

H̃0(k) = H(k) +
( e
~

)2∑
ij

∂2H

∂ki∂kj

A0
iA

0
j

4
(ηiη

∗
j + η∗i ηj)

[H̃−1(k)]† = H̃1(k) =
( e
~

)∑
i

∂H

∂ki

A0
i

2
ηi

(S10)

Note that the Taylor expansion in Eq. (S8) is valid only when
e

~
A is small as compared with the

size of the Brillouin zone, which is on the order of Å
−1

. With ω = 1 eV and E = 1 V/nm, one has
e

~
A ≈ 0.1 Å

−1
. Hence the expansion is generally valid.

The interaction between electrons and light is mainly attributed to the [H−1, H1], which describes

the process that a photon is first virtually absorbed, and then virtually emitted by the electron. For

a linearly polarized light (LPL), one can easily verify that [H−1, H1] is zero. Therefore LPL cannot

significantly change the electronic structure. Also, LPL preserves the time-reversal symmetry and
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Figure S1: The surface spectrum function of Bi2Se3 under linearly polarized light. Note that linearly polarized light
cannot open bandgaps on the surface states.

cannot open bandgaps on the surface states of topological materials. This is verified by our calculations

(Figure S1).

As discussed in the main text, the model Hamiltonian for the surface states of topological insulators

is

HSS(k) = ~vF (kxσy − kyσx) (S11)

Here one has ∂H
∂kx

= ~vFσy and ∂H
∂ky

= −~vFσx, while all other higher order derivatives of H with respect

to k are zero. Thus one has

[H̃−1(k)]† = H̃1(k) =
evF
2

(Axηxσy −Ayηyσx) (S12)

For a CPL, one should have Ax = Ay = A, ηx = 1, and ηy = ±i. It is not hard to show that

[H̃−1(k), H̃1(k)] = ±e2v2
FA

2σz (S13)

Putting Eq. (S13) back to Eq. (S7), one can obtain Eq. (2) in the main text.

2 Responses under light with low frequency

In the main text we used Ω = 5 eV for all the calculations with Bi2Se3. Actually, one can (maybe

improperly) apply the van Vleck’s expansion to light with low frequency. Here we show the results
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Figure S2: The surface states of Bi2Se3 under light with frequency Ω = 0.2 eV. (a) Bandgap v.s. electric field
strength at Ω = 0.2 eV. (b) Surface states spectrum at Ω = 0.2 eV and eA

~ = 0.04 Å−1. (c) Layer-resolved Hall

conductance at Ω = 0.2 eV and eA
~ = 0.04 Å−1.

with Ω = 0.2 eV in Figure S2. One can see that the results are essentially the same as those with

Ω = 5 eV; that is, under circularly polarized light a bandgap is opened on the surfaces, and the surfaces

acquire a quantized anomalous Hall conductance. Also, at Ω = 0.2 eV, an electric field strength of

eA
~ = 0.015 Å−1 (E = 0.03 V/nm, I = 12 MW/cm2) would be able to generate a bandgap of 20 meV.

On the other hand, at Ω = 5 eV, it takes E = 5 V/nm, I = 3.3 × 106 MW/cm2 to generate the same

bandgap.

When using the van Vleck’s expansion at low frequencies, two sources of errors should be considered:

1) the interband transitions would lead to a non-thermal distribution of the electrons. In other words,

one cannot simply use the Fermi-Dirac distribution. As light is turned on, the electrons are gradually

pumped from the valence bands to the conduction bands. It takes time for the electron distribution to

deviate significantly from the original Fermi-Dirac distribution. Specifically, if the pumping rate is R,

then the distribution deviation is δf ∝ Rt. Thus, one should expect that the Fermi-Dirac distribution

is valid at the very initial stage (t� 1/R, which may be a few femtoseconds). 2) there is a correction

to the effective Hamiltonian Heff whose relative magnitude is on the order of A
Ω

. But this may not make

a big difference, because when one uses smaller Ω, then a smaller A would be able to generate the same

bandgap, as we described above. Hence, the A
Ω

can be kept relatively small even if Ω is small.

3 Spin Hall Conductivity

We have also calculated the spin Hall conductance based on the Kubo-formula

σs
i

ab =
e2

~
∑
n 6=m

dk

(2π)2
(fn − fm)

Im {〈m|jia|n〉〈n|vb|m〉}
(ωm − ωn)2

(S14)
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Here jia = 1
2
(siva + vas

i) is the spin current operator. We focus on the spin current with spin-z

polarization σs
z

ab . The layer-resolved spin Hall conductance of a slab system with 24 quintuple layers

(QLs) is shown in Figure S3. One can see that the middles layers have spin Hall conductance around

0.36 ~
2e
e2

h
, which is very close the value when the layer is put in the bulk system (dash horizontal line).

Figure S3: The spin Hall conductance of a Bi2Si3 slab system with 24 quintuple layers. The dashed horizontal line
is the spin Hall conductance per layer when the layers are put in the bulk system.

In Figure S4 we plot the the spin and charge Hall conductance per layer of bulk Bi2Si3. One can

see that A field strength of eA
~ = 0.05 Å−1 is not enough to trigger the phase transition to quantum

anomalous Hall insulators in the bulk.

Figure S4: The Hall conductance of a quintuple layer in the bulk Bi2Si3 as a function of the strength of the
circularly polarized light. A field strength of eA

~ = 0.05 Å−1 is not enough to trigger the phase transition to quantum
anomalous Hall insulators in the bulk, thus the charge Hall conductance is always zero. On the other hand, the spin

Hall conductance is about 0.36 ~
2e

e2

h
, and slightly varies with the field strength.
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