Local Density of States (LDOS):

$$\rho_i(\omega) = \sum_n \delta(\omega - \omega_n) |\langle i|n\rangle|^2$$
 (0.1)

Total Density of States (DOS):

$$\rho(\omega) = \sum_{n} \delta(\omega - \omega_n) = \sum_{i} \rho_i(\omega)$$
 (0.2)

Green's function:

$$G(z=\omega+iarepsilon)=rac{1}{z-H}=\sum\limits_{n}rac{|n
angle\langle n|}{\omega+iarepsilon-\omega_{n}}$$

Real Space Green's Function (RSGF) method:

$$ho_i(\omega) = -rac{1}{\pi} {
m Im}_{arepsilon o 0^+} G_{ii}(\omega + iarepsilon)$$

- G(z) (the "resolvent matrix") can be efficiently evaluated for block-tridiagonal systems using iterative methods (matrix operations).
- Convergence is achieved by going to larger and larger number of interacting shells.
- Except for 1D and pseudo-1D systems, efficiency deteriorates due to progressively increasing block size.

Our method ("Multi-Channel Perturbation Method"?):

- Bypass matrix operations.
- Order-N when matrix is sparse.
- Measure the entire spectrum in one run.
- No arbitary truncation of interaction shells.
- Theoretical error control.

perturbation:

$$f_i(t) = \sum_{m'=1}^{M} A(m') \sin(m'\alpha t)\theta(t), \qquad f_{j\neq i} \equiv 0$$

response:

$$u_i(t)$$

An identity:

$$\rho_i(\omega = m\alpha) = -\frac{2(m\alpha)^2}{\pi^2} \lim_{k \to \infty} \frac{1}{A(m)mk} \int_0^{\frac{2k\pi}{\alpha}} u_i(t) \cos(m\alpha t) dt$$

Rationale:

• What's Green's function?

Green's function corresponds to the response ("displacement") of the system to an external perturbation ("force").

Example of lattice dynamics:

$$\ddot{\mathbf{u}}(t) = -\mathbf{D}\mathbf{u}(t) + \mathbf{f}(t) \tag{0.3}$$

where **D** is the dynamical matrix. Let $\mathbf{f}(t) = \mathbf{f}e^{-i\omega t}$, $\mathbf{u}(t) = \mathbf{u}e^{-i\omega t}$, then

$$\mathbf{u} = -\frac{1}{w^2 - \mathbf{D}}\mathbf{f} = -\mathbf{G}(\omega^2)\mathbf{f}$$

- \Rightarrow By doing simulations via equation of motion (0.3), we can get $\mathbf{G}(\omega^2)$.
- \Rightarrow Because $\mathbf{G}(\omega^2)$ and LDOS are closely related, maybe we can get the LDOS from a similar experiment.

Idea Experiment – Single-Channel Perturbation:

Add monochromatic sinusoidal perturbation force on atom i at t > 0,

$$f_i(t) = \sin(\omega t)\theta(t), \qquad f_{j\neq i} \equiv 0$$

The real-time Green's function:

$$G(t) = \frac{\sin \omega_0 t}{\omega_0} \theta(t) \qquad (1D)$$

$$\Rightarrow \quad \mathbf{G}(t - t') = \sum_n \frac{\sin \omega_n (t - t')}{\omega_n} \theta(t - t') |n\rangle \langle n|$$

The response is

$$u_{i}(t) = \langle i | \int \mathbf{G}(t - t') * \mathbf{f}(t') dt' \rangle$$

$$= \sum_{n} \frac{|\langle i | n \rangle|^{2}}{2\omega_{n}} \left(\frac{\sin \omega t + \sin \omega_{n} t}{\omega + \omega_{n}} - \frac{\sin \omega t - \sin \omega_{n} t}{\omega - \omega_{n}} \right)$$
(0.4)

In the limit of large t,

$$u_i(t)$$
 approximately $\longrightarrow \sum_n -\frac{|\langle i|n\rangle|^2}{2\omega_n} \cdot 2\pi\delta(\omega-\omega_n)\cos(\omega t)$

Rigorously, by using a representation of the δ -function (which's also the one used in deriving Fermi's Golden Rule),

$$\lim_{\alpha \to \infty} \frac{\sin^2 \alpha x}{\pi \alpha x^2} = \delta(x)$$

We can show that the resonance amplitude of i due to perturbation on i — which was shown above to be proportional to the LDOS, can be filtered out by multiplying $\cos \omega t$ and integrate up to node $T = 2k\pi/\omega$, where k is a large integer. Thus we arrive at the central result

$$\rho_i(\omega) = -\frac{2\omega^2}{\pi^2} \lim_{k \to \infty} \frac{1}{k} \int_0^{\frac{2k\pi}{\omega}} u_i(t) \cos \omega t dt$$
 (0.5)

- So the procedure would be
 - 1. Add perturbation on i and do "MD" using equation of motion

$$\ddot{\mathbf{u}}(t) = -\mathbf{D}\mathbf{u}(t) + \mathbf{f}(t)$$

2. Integrate $u_i(t)$ using formula (0.5) to get $\rho_i(\omega)$.

Multi-Channel Perturbation:

- Observation:
 - Major cost in computing $\mathbf{D}\mathbf{u}(t)$ at each step.
 - Adding perturbation and doing integration cost very little.

Question: Is it possible to get many channels of frequency information out of a single "MD" run?

It turns out that $we \ can$, on condition that all frequencies are multiples of a certain base frequency α , and that the integration is up to a node of the base frequency.

Perturbation:

$$f_i(t) = \sum_{m'=1}^{M} A(m') \sin(m'\alpha t)\theta(t), \qquad f_{j\neq i} \equiv 0$$

The interference effect between channels completely vanishes in the limit of large k:

$$\rho_i(\omega = m\alpha) = -\frac{2(m\alpha)^2}{\pi^2} \lim_{k \to \infty} \frac{1}{A(m)mk} \int_0^{\frac{2k\pi}{\alpha}} u_i(t) \cos(m\alpha t) dt$$

Several Points:

- $\mathbf{D}\mathbf{u}(t)$ multiplication is $\mathcal{O}(N)$ when \mathbf{D} is sparse, $\mathcal{O}(N^2)$ when \mathbf{D} is dense.
- Memory requirement is minimal.
- Measure the full spectrum.
- Equation of motion can be entirely *fictitious*. If we replace **D** by electronic tight-binding Hamiltonian H, the only difference is to replace ω by $\sqrt{\omega}$.
- Even at finite k, we know exactly what the δ -functions are replaced by, which will give a theoretical account of the error. One conclusion is that the linewidth is **uniform** for all channels:

$$\Delta\omega = \frac{\alpha}{k} \tag{0.6}$$

High-Precision Integration Scheme:

Due to the *explicit* form of the equation of motion, we can come up with a high-precision integration scheme that allows timestep 1000 to 2000 times larger than those of the conventional methods ($\omega_{max}\Delta t \sim 2\pi/3!$), while the cost of each step only increases by 5 times (for the order-12 case). The idea is a generalization of the Verlet algorithm:

$$\mathbf{u}(t + \Delta t) + \mathbf{u}(t - \Delta t) = 2\mathbf{u}(t) + (\Delta t)^2 \ddot{\mathbf{u}}(t) + \frac{(\Delta t)^4}{12} \mathbf{u}^{(4)}(t) + \frac{(\Delta t)^6}{360} \mathbf{u}^{(6)}(t) + \dots$$
Because $\ddot{\mathbf{u}}(t) = -\mathbf{D}\mathbf{u}(t) + \mathbf{f}(t)$, so
$$\mathbf{u}^{(4)}(t) = -\mathbf{D}\ddot{\mathbf{u}}(t) + \ddot{\mathbf{f}}(t)$$

$$\mathbf{u}^{(6)}(t) = -\mathbf{D}\mathbf{u}^{(4)}(t) + \mathbf{f}^{(4)}(t)$$

are exact and can be *evaluated* successively with only the initial knowledge of $\mathbf{u}(t)$. The integration could be done to the same order of accuracy using integration by parts,

$$\int_{t}^{t+\Delta t} u_{i}(t') \cos(m\alpha t') dt' = \left[\frac{u_{i}(t') \sin(m\alpha t')}{m\alpha} + \frac{\dot{u}_{i}(t') \cos(m\alpha t')}{(m\alpha)^{2}} - \frac{\ddot{u}_{i}(t') \sin(m\alpha t')}{(m\alpha)^{3}} - \frac{u_{i}^{(3)}(t') \cos(m\alpha t')}{(m\alpha)^{4}} + \dots - \frac{u_{i}^{(10)}(t') \sin(m\alpha t')}{(m\alpha)^{11}} - \frac{u_{i}^{(11)}(t') \cos(m\alpha t')}{(m\alpha)^{12}} \right]_{t}^{t+\Delta t}$$

Error Analysis:

- In measuring the full spectrum it is most convienient to let k = 1 and α be the desired resolution of your measurement. Usually $\alpha = \omega_{max}/M, M \sim 300$.
- \Rightarrow It is best in the sense that all ω_n 's of the system *shall* be covered by the main peak of one channel or the other and so no information is lost. On the other hand the non-ideal k=1 condition can induce strong interference between nearby channels: m and $m \pm 1, m \pm 2$.

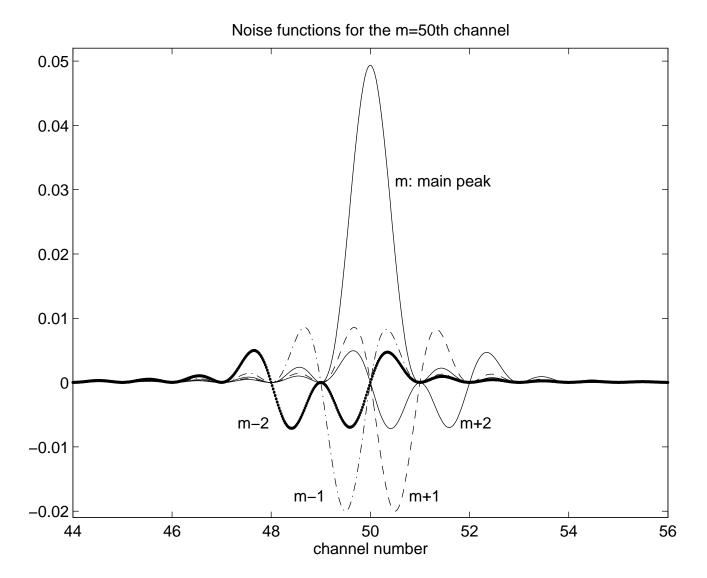
At k = 1, what's actually happening?

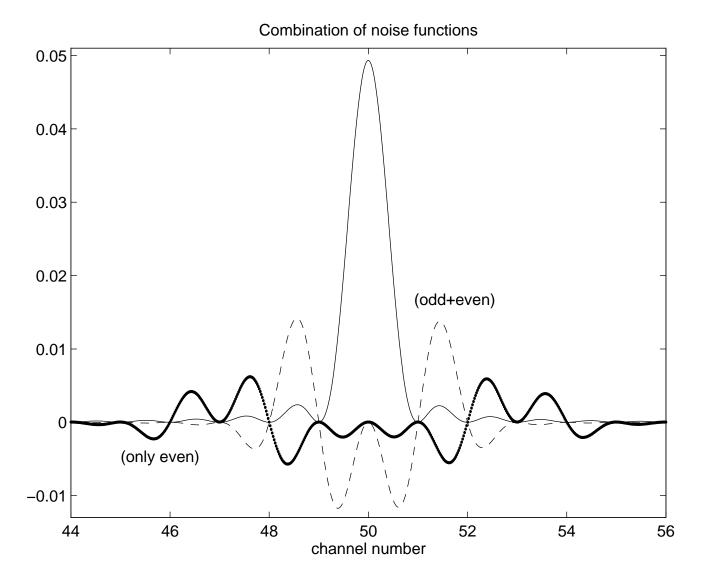
$$\delta(\omega_n - m\alpha) \to \left\{ \sum_{m'=1}^M A_{m'} N_{m,m'} \left(\frac{\omega_n}{\alpha} \right) \right\} \cdot \frac{4m}{A_m \pi^2 \alpha}$$
$$N_{m,m'}(\omega) = \frac{\sin^2(\pi\omega)m'}{(m^2 - \omega^2)(m'^2 - \omega^2)}$$

in which only the m'=m term is needed. All others are noise functions that although give zero net drift:

$$\int_0^{+\infty} N_{m,m'}(\omega) d\omega = 0 \quad \text{for} \quad m' \neq m.$$

they impair the resolution power.





Question: Can we design an $\{A_m\}$ series that globally decrease the effect of noise?

• "Time-reversal" symmetry:

Notice that $A_{m'}$ can be any complex number while $N_{m,m'}(\omega)$ is always real.

 \Rightarrow Assign alternating "parities" to different channels

$$Im A_m = (-1)^m Re A_m$$

 $\Rightarrow Observe that$

mth channel real response: ... + $(\text{ReA}_{m-1})N_{m,m-1}(\omega)$ + $(\text{ReA}_m)N_{m,m}(\omega)$ + $(\text{ReA}_{m+1})N_{m,m+1}(\omega)$ + ... mth channel imaginary response: ... + $(\text{ImA}_{m-1})N_{m,m-1}(\omega)$ + $(\text{ImA}_m)N_{m,m}(\omega)$ + $(\text{ImA}_{m+1})N_{m,m+1}(\omega)$ + ...

 \Rightarrow If we use

(mth channel real response) + $(-1)^m \times$ (mth channel imaginary response)

then all odd-distanced noise functions would be cancelled out because the two channels have different "parity". Furthermore there will be cancellations if A_{m-2} and A_{m+2} are of the same sign. So we arrive at the following amplitude series,

$$\begin{cases}
Re A_m = (-1)^{(m \text{ div } 2)}, & \text{i.e., } + + - - + + - - \\
Im A_m = (-1)^m Re A_m, & \text{i.e., } + - - + + - - + \\
\end{cases}$$

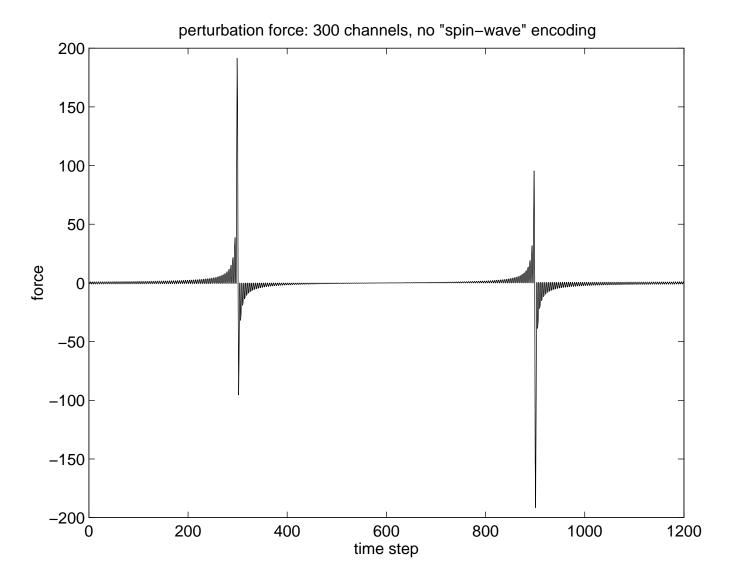
There is another issue: we want $f_i(t)$ to be well-behaved in time such that it does not contain very high blips that will destroy the numerical integration.

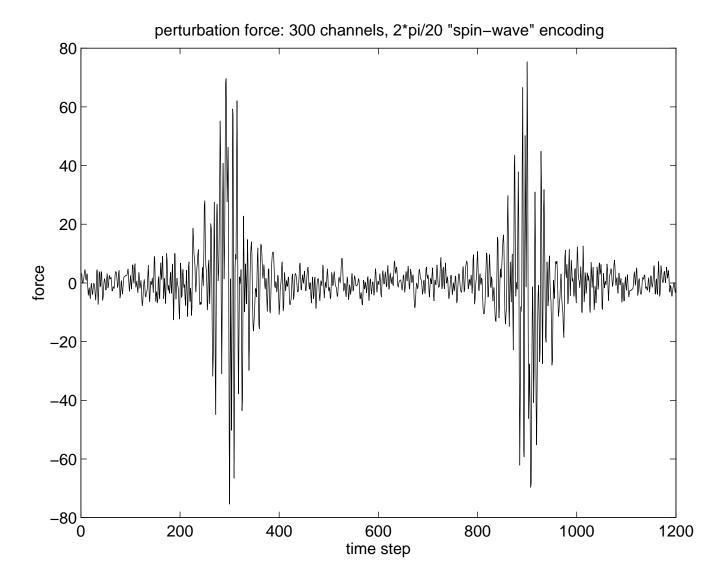
- The above $\{A_m\}$ doesn't work well in this sense because at $t = \pi/2\alpha$ there will be a sharp resonance in $f_i(t)$ that's proportional to M and with even higher derivatives. Such resonances are due to the long-ranged order in $\{A_m\}$ irrespective of its detailed repeat pattern.
- \Rightarrow We can improve the situation by multiplying $\{A_m\}$ by a slowly varying "spin-wave":

$$B_m = e^{i\phi_m} A_m, \qquad \phi_{m+1} = \phi_m + \xi_m \Delta \theta$$

where ξ_m is a random number taking equally possible value ± 1 and $\Delta\theta$ is a constant small angle.

- \Rightarrow long-ranged order destroyed
- \Rightarrow short-ranged order remains such that previous error cancelling scheme still works.
- We will use $\{B_m\}$ as the amplitude series and in the end just "decode" the mth channel result by multiplying $e^{-i\phi_m}$.





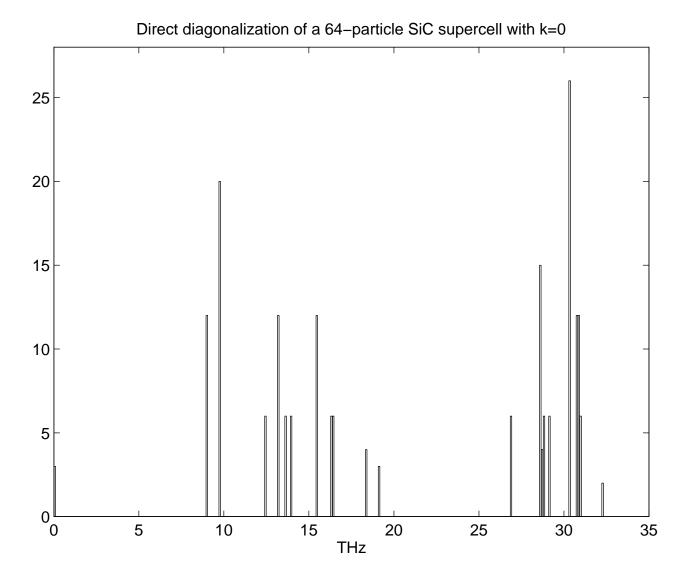
• The algorithm is generally **robust** except at very low frequencies, where the first few channels usually diverge. We can solve the problem by doing a *rigid shift transformation* on the dynamical matrix

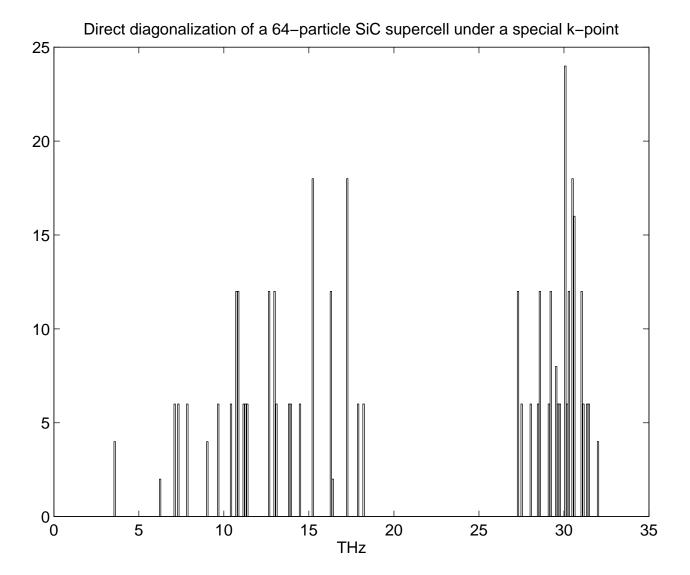
$$\mathbf{D} o \mathbf{D} + \omega_{shift}^2 \mathbf{I}$$

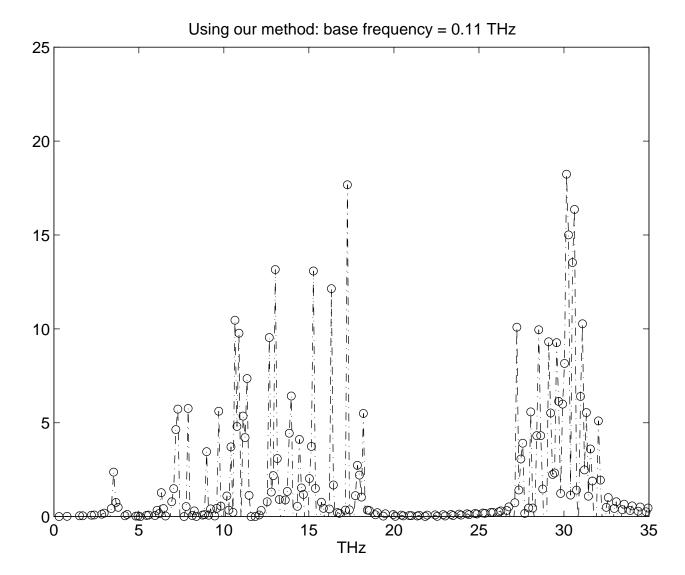
such that all meaningful channels are outside the divergence region, and use the new matrix instead. In the end we just do a simple transformation back to $\rho_i(\omega)$:

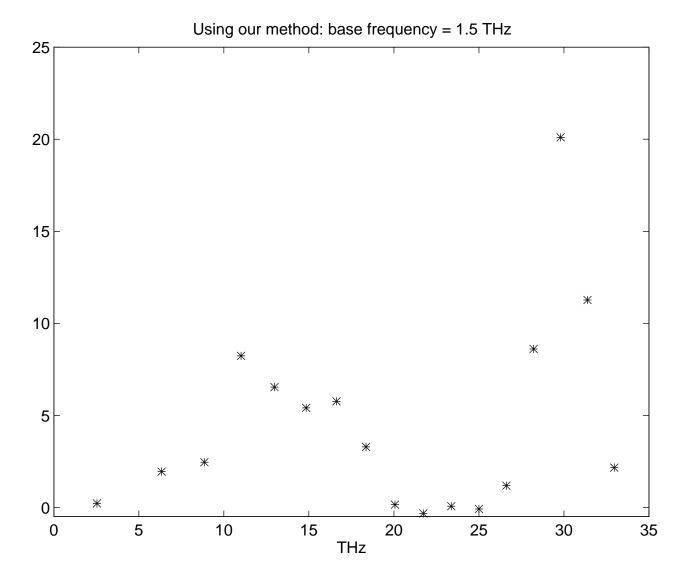
$$\omega'^2 = \omega^2 + \omega_{shift}^2 \qquad \qquad
ho_i(\omega) = \frac{\omega}{\omega'}
ho_i'(\omega')$$

Test on a small matrix: We studied the dynamical matrix of a SiC supercell with 64 particles inside in perfect crystalline order. First shown is the result of direct diagonalization of this real matrix (the " Γ -point"). A better representation is given after we impose a supercell **k**-wavevector $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \frac{2\pi}{A}$ on the dynamical matrix, which is a special **k**-point given by Baldereschi for the simple-cubic BZ (of the supercell). Direct diagonalization of this new matrix shows that the zero-modes are now shifted. We apply our method on this 192×192 Hermitian matrix and compare with the exact results. Two extremes are shown: one is very small α , the other is rather large α .









Total DOS of perfect SiC crystal from exact phonon dispersion calculation 0.25 0.2 0.15 0.1 0.05 0 0 10 5 15 20 25 30 35 THz

LDOS of Si and C in perfect crystal:

Solid line from exact phonon dispersion calculations by diagonalizing 6×6 matrices in the **k**-space of the unit cell (zinc-blend structure, fcc lattice). A total number of 100,000 **k**-points were randomly sampled to give the two smooth curves.

Our method:

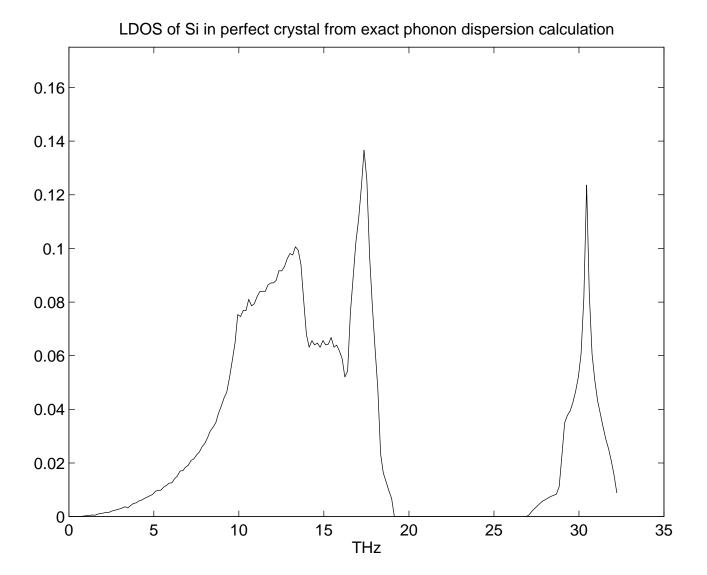
- A 4096-particle supercell is being used, which means a 12288 \times 12288 Hermitian matrix for each supercell **k**. "The bigger, the merrier!"
- Dynamical matrix from three-body Tersoff potential. Each particle has 4 nearest and 12 second-nearest neighbours and so total of 51 non-vanishing entries in a column of **D**.
- $\alpha = 0.125 \text{ THz}, w_{max} = 35 \text{ THz}; \quad \omega_{shift} = 2 \text{ THz}.$
- time step: $\omega_{max}\Delta t = 2\pi/3$; "spin-wave" encoding: $\Delta\theta = \pi/10$.
- A total number of 25/30 supercell **k**-points were randomly sampled for Si/C.

Facts:

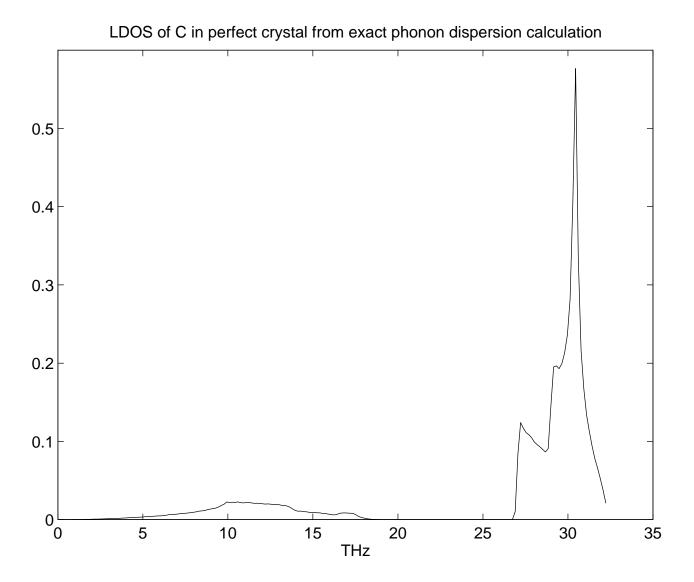
- High quality results, up to the very low frequency region, with very sharp resolution of the band gap and critical points.
- The speed is 20 minutes per supercell **k**-point for a full LDOS spectrum calculation on a desktop DEC α -workstation, for this very large system. !!@*?!. $\heartsuit \heartsuit$!
- One-loop structure can be easily vectorized.

Defect calculations:

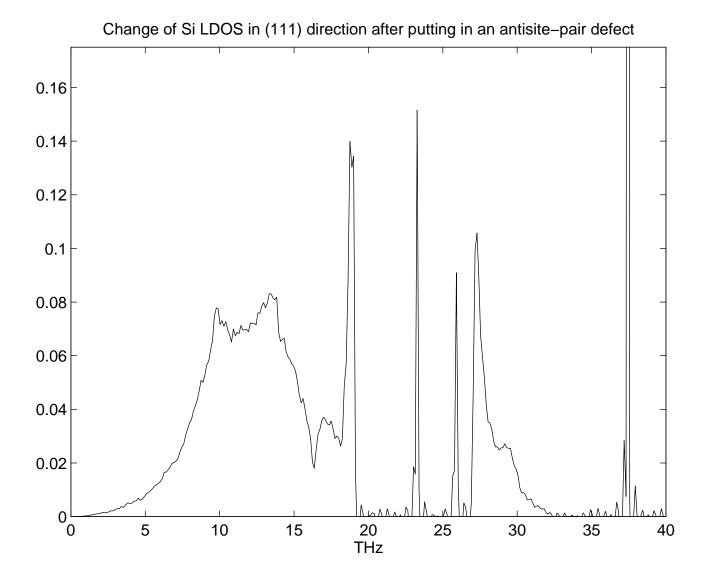
Switch a nearest-neighbour pair of Si and C in the above supercell, thus generating an antisite-pair defect. The configuration was relaxed by the conjugate gradient method. LDOS is calculated for the switched two atom in the direction of their bond. All parameters remain unchanged except $\omega_{max} = 40$ THz. Observe the splitting of the optical branch and the generation of two gap modes at 23.2 and 25.9 THz.



Our method: 4096 particles, base frequency = 0.125 THz, 25 supercell k-points 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 10 15 5 20 30 THz



Our method: 4096 particles, base frequency = 0.1 THz, 30 supercell k–points 0.5 0.4 0.3 0.2 35 0.1 0 20 25 10 5 15 THz



Change of C LDOS in (111) direction after putting in an antisite-pair defect 0.5 0.4 0.3 0.2 0.1 0 L THz