Local Density of States (LDOS):

pilw) =3 d(w — wn)|(i|n)[" (0.1)
Total Density of States (DOS):
) = 56w = wn) = (o) (02
Green’s function:
EURR T n){n|
Glz = w+ie) = z—H _;w—l—is—wn

Real Space Green’s Function (RSGF) method:

1
pZ(LU) = —;Img%an(w + ’Lé‘)

e G(2) (the “resolvent matrix”) can be efficiently evaluated for block-tridiagonal systems
using iterative methods (matrix operations).

e Convergence is achieved by going to larger and larger number of interacting shells.

e Except for 1D and pseudo-1D systems, efficiency deteriorates due to progressively increasing
block size.



Our method (“Multi-Channel Perturbation Method”?):
e Bypass matrix operations.
e Order-N when matrix is sparse.
e Measure the entire spectrum in one run.
e No arbitary truncation of interaction shells.

e Theoretical error control.

perturbation:

M

fit) = X A(m/)sin(m'at)f(t), fiz=0
m/=1
TESPONSE:
ui(t)

An identity:

2(ma)? 1 2kn

pilw =ma) = — (ma) lim ————— [ wu,(t) cos(mat)dt

2 k—=oo A(m)mk /0




Rationale:

e What’s Green’s function?

Green’s function corresponds to the response (“displacement”) of the system to an
external perturbation (“force”).

Example of lattice dynamics:

iu(t) = —Du(t) + £(¢) (0.3)
where D is the dynamical matrix. Let £(¢) = fe™™! u(t) = ue !, then
1
S O f
u D G(w?)

= By doing simulations via equation of motion (0.3), we can get G (w?).

= Because G(w?) and LDOS are closely related, maybe we can get the LDOS from a similiar
experiment.



Idea Experiment — Single-Channel Perturbation:
Add monochromatic sinusoidal perturbation force on atom ¢ at ¢ > 0,

fi(t) = sin(wt)d(t), fizi =0

The real-time Green’s function:

at) = oy (p)

wo

inw, (t — ¢
= Gt—t)= zsmwi )

0t — 1) In)(n/

The response is

wi(t) = (| [G(t—t)*£(t)dt')
|(i|n) |2 (sin wt + sinw,t  sinwt — sin wnt>

[~

2wy, w + Wy w — Wy

In the limit of large ¢,

oo\ (2
u;(t) approximately — Z_|<z|n>|

T 210 (w — wy,) cos(wt)



Rigorously, by using a representation of the d-function (which’s also the one used in
deriving Fermi’s Golden Rule),

sin? ax

= d(x)

lim
a—00 7.‘-05332
We can show that the resonance amplitude of ¢+ due to perturbation on ¢ — which was shown
above to be proportional to the LDOS, can be filtered out by multiplying coswt and integrate

up to node T' = 2kw /w, where k is a large integer. Thus we arrive at the central result

2w? 1 %
pi(w) = —?klgglo%/o w;(t) cos wtdt (0.5)

e So the procedure would be

1. Add perturbation on ¢ and do “MD” using equation of motion

ii(t) = —Du(t) + £(¢)

2. Integrate wu;(t) using formula (0.5) to get p;(w).



Multi-Channel Perturbation:

e Observation:

— Major cost in computing Du(t) at each step.
— Adding perturbation and doing integration cost very little.

Question: Is it possible to get many channels of frequency information out of a single
“MD” run?

It turns out that we can, on condition that all frequencies are multiples of a certain base
frequency o, and that the integration is up to a node of the base frequency.

Perturbation:

Al = S Am))sin(m'at)d(t),  frz =0

m/=1

The interference effect between channels completely vanishes in the limit of large &:

2(ma)® . 1 2k
2 klinéom/o u;(t) cos(mat)dt

pilw =ma) = —




Several Points:
e Du(t) multiplication is O(N) when D is sparse, O(N?) when D is dense.
e Memory requirement is minimal.
e Measure the full spectrum.

e Equation of motion can be entirely fictitious. If we replace D by electronic tight-binding
Hamiltonian H, the only difference is to replace w by /w.

e Even at finite k£, we know exactly what the d-functions are replaced by, which will give a
theoretical account of the error. One conclusion is that the linewidth is uniform for all
channels:

Aw = (0.6)

«
k



High-Precision Integration Scheme:

Due to the explicit form of the equation of motion, we can come up with a high-precision
integration scheme that allows timestep 1000 to 2000 times larger than those of the
conventional methods (wyee At ~ 27 /3!); while the cost of each step only increases by 5 times
(for the order-12 case). The idea is a generalization of the Verlet algorithm:
(At)* (At)° )

u(t + At) +u(t — At) = 2u(t) + (At)*a(t) + ou (t) + 260 "

(t) + ...
Because i(t) = —Du(t) + £(¢), so

u(t) = —Du(t) + £(¢)

u®@) = -Du?@) + W)

are exact and can be evaluated successively with only the initial knowledge of u(t). The
integration could be done to the same order of accuracy using integration by parts,

w; () sin(mat’) 4 (t") cos(mat’)

AL, N
/t w;(t') cos(mat’)dt =

mao (ma)?
_U(¢) sin(mat’) ul? (') cos(mat’)
(ma)’ (ma)*
t+At
_uz(-w)(t’) sin(mat’) ul(-ll)(t’) cos(mat’) ’
(ma)ll (ma)2 t




Error Analysis:

e In measuring the full spectrum it is most convienient to let £ = 1 and « be the desired
resolution of your measurement. Usually o = wya. /M, M ~ 300.

e = [t is best in the sense that all w,’s of the system shall be covered by the main peak of
one channel or the other and so no information is lost. On the other hand the non-ideal k£ = 1
condition can induce strong interference between nearby channels: m and m 4+ 1, m + 2.

At k=1, what’s actually happening?

O(wp — ma) — { % Ay Ny (%)} ,_4m

m'=1 Ao
sin?(mw)m/
(m? — w?)(m”?2 — w?)
in which only the m’ = m term is needed. All others are noise functions that although give
zero net drift:

Nm,m’ (w) —

/O+OO Ny (w)dw =0 for m' #m.

they impair the resolution power.
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Combination of noise functions
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Question: Can we design an {A,,} series that globally decrease the effect of noise?

e “Time-reversal” symmetry:
Notice that A, can be any complex number while IV, ,v(w) is always real.
= Assign alternating “parities” to different channels

ImA,, = (—1)"ReA,,

= QObserve that

mth channel real response: ..+ (ReAn_1) Ny m-1(w) + (ReAn)

( m (w) + (ReAm+1)Nm,m+1(w) + ..
mth channel imaginary response: .. + (ImAp,_1) Npym-1(w) + (ImAy,)

Nimm
Nm,m(w) + (ImAm+1)Nm,m+1 (w) =+ ..

= If we use

(mth channel real response) + (—1)™x (mth channel imaginary response)

then all odd-distanced noise functions would be cancelled out because the two
channels have different “parity”. Furthermore there will be cancellations if A,,_s and A,, 19
are of the same sign. So we arrive at the following amplitude series,

Red,, = (—1)mv2) o 4h— — 44—
Ay = (—1)"Redy,  ie,+— — 4+ — —
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There is another issue: we want f;(t) to be well-behaved in time such that it does not
contain very high blips that will destroy the numerical integration.

e The above {A,,} doesn’t work well in this sense because at ¢ = 7 /2« there will be a sharp
resonance in f;(t) that’s proportional to M and with even higher derivatives. Such resonances
are due to the long-ranged order in {A,,} irrespective of its detailed repeat pattern.

= We can improve the situation by multiplying {A,,} by a slowly varying “spin-wave”:
Bm — eiQSmAm, ¢m+1 — ¢m -+ fmAQ

where &, is a random number taking equally possible value +1 and A# is a constant small
angle.

= long-ranged order destroyed

= short-ranged order remains such that previous error cancelling scheme still works.

e We will use {B,,} as the amplitude series and in the end just “decode” the mth channel
result by multiplying e ~"%m.

13
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e The algorithm is generally robust except at very low frequencies, where the first few
channels usually diverge. We can solve the problem by doing a rigid shift transformation on
the dynamical matrix

D—-D+ wﬁ,”. al

such that all meaningful channels are outside the divergence region, and use the new matrix
instead. In the end we just do a simple transformation back to p;(w):

W
w? =w’ + w?hift pi(w) = Jpg(w’)

Test on a small matrix: We studied the dynamical matrix of a SiC supercell with 64
particles inside in perfect crystalline order. First shown is the result of direct diagonalization
of this real matrix (the “I'-point”). A better representation is given after we impose a

%, i, i)Q—W on the dynamical matrix, which is a special k-point given

supercell k-wavevector ( 1

by Baldereschi for the simple-cubic BZ (of the supercell). Direct diagonalization of this new
matrix shows that the zero-modes are now shifted. We apply our method on this 192 x 192
Hermitian matrix and compare with the exact results. Two extremes are shown: one is very

small a, the other is rather large a.
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Using our method: base frequency = 0.11 THz
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LDOS of Si and C in perfect crystal:

Solid line from exact phonon dispersion calculations by diagonalizing 6 X 6 matrices in the
k-space of the unit cell (zinc-blend structure, fcc lattice). A total number of 100,000 k-points
were randomly sampled to give the two smooth curves.

Our method:
e A 4096-particle supercell is being used, which means a 12288 x 12288 Hermitian matrix

for each supercell k. “The bigger, the merrier!”

e Dynamical matrix from three-body Tersoff potential. Each particle has 4 nearest and 12
second-nearest neighbours and so total of 51 non-vanishing entries in a column of D.

o o = 0.125 THz, wyey = 35 THz;  wgpifr = 2 THz.
e time step: wWme At = 27/3;  “spin-wave” encoding: Af = 7/10.
e A total number of 25/30 supercell k-points were randomly sampled for Si/C.

22



Facts:

e High quality results, up to the very low frequency region, with very sharp resolution of
the band gap and critical points.

e The speed is 20 minutes per supercell k-point for a full LDOS spectrum calculation on a
desktop DEC a—workstation, for this very large system. /@*%1.QQ/

e One-loop structure can be easily vectorized.

Defect calculations:

Switch a nearest-neighbour pair of Si and C in the above supercell, thus generating an
antisite-pair defect. The configuration was relaxed by the conjugate gradient method. LDOS
is calculated for the switched two atom in the direction of their bond. All parameters remain
unchanged except wmaq: = 40 THz. Observe the splitting of the optical branch and the
generation of two gap modes at 23.2 and 25.9 THz.
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Our method: 4096 patrticles, base frequency = 0.125 THz, 25 supercell k—points
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Our method: 4096 patrticles, base frequency = 0.1 THz, 30 supercell k—points
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